Plenty of analytical and semi-analytical wave solutions of shallow water beneath gravity  

在线阅读下载全文

作  者:Mostafa M.A.Khater SamirA.Salama 

机构地区:[1]Department of Mathematics,Faculty of Science,Jiangsu University,Zhenjiang 212013,China [2]Department of Mathematics,Obour High Institute For Engineering and Technology,Cairo 11828,Egypt [3]Division of Biochemistry,Department of Pharmacology,College of Pharmacy,Taif University,P.O.Box 11099,Taif 21944,Saudi Arabia

出  处:《Journal of Ocean Engineering and Science》2022年第3期237-243,共7页海洋工程与科学(英文)

基  金:We greatly thank Taif University for providing fund for this work through Taif University Researchers Supporting Project num-ber(TURSP-2020/52);Taif University,Taif,Saudi Arabia.

摘  要:This article studies novel soliton wave solutions of the nonlinear fractional ill-posed Boussinesq(NLFIPB)dynamic wave equation by applying the extended Riccati-expansion(ERE)method.Jacques Hadamard has formulated the investigated model to figure out the dynamic characterizations of waves in shallow water under gravity.The obtained solutions are explained through some sketches in 2D and 3D and contour plots.At the same time,the results’accuracy is checked by comparing the obtained solutions with semianalytical solutions through the well-known Adomian decomposition(AD)method.The superiority of the ERE method over the original method is explained.All constructed solutions are checked by submitting them back into the original model through Mathematica 12 software.

关 键 词:Ill-posed Boussinesq dynamical wave Analytical and semi-analytical simulations 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象