Graph-enhanced neural interactive collaborative filtering  

图神经网络增强交互协同过滤推荐算法

在线阅读下载全文

作  者:Xie Chengyan Dong Lu 谢程燕;董璐(东南大学自动化学院,南京210096;东南大学网络空间安全学院,南京211189)

机构地区:[1]School of Automation, Southeast University, Nanjing 210096, China [2]School of Cyber Science and Engineering, Southeast University, Nanjing 211189, China

出  处:《Journal of Southeast University(English Edition)》2022年第2期110-117,共8页东南大学学报(英文版)

基  金:The National Natural Science Foundation of China(No.62173251);the Guangdong Provincial Key Laboratory of Intelligent Decision and Cooperative Control,the Fundamental Research Funds for the Central Universities.

摘  要:To improve the training efficiency and recommendation accuracy in cold-start interactive recommendation systems,a new graph structure called item similarity graph is proposed on the basis of real data from a public dataset.The proposed graph is built from collaborative interactions and a deep reinforcement learning-based graph-enhanced neural interactive collaborative filtering(GE-ICF)model.The GE-ICF framework is developed with a deep reinforcement learning framework and comprises an embedding propagation layer designed with graph neural networks.Extensive experiments are conducted to investigate the efficiency of the proposed graph structure and the superiority of the proposed GE-ICF framework.Results show that in cold-start interactive recommendation systems,the proposed item similarity graph performs well in data relationship modeling,with the training efficiency showing significant improvement.The proposed GE-ICF framework also demonstrates superiority in decision modeling,thereby increasing the recommendation accuracy remarkably.为提升冷启动场景下交互推荐系统的训练效率和推荐精度,基于一个公开数据集的真实数据,根据用户交互构建了一种商品相似度连接图,并设计了基于深度强化学习的图神经网络增强交互协同过滤模型(GE-ICF)来进行仿真实验.该模型基于深度强化学习框架,采用图神经网络进行向量传播层设计,在商品相似度连接图中挖掘商品间关系,优化商品向量准确度.结果表明:在冷启动交互推荐场景下,商品相似度连接图能够对大规模稀疏交互推荐数据关系进行高效建模,有效提升训练效率;GE-ICF模型能够深入挖掘数据间关系,进行更精确地决策建模,有效提高了训练精度.

关 键 词:interactive recommendation systems COLD-START graph neural network deep reinforcement learning 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象