Volterra型微分-积分方程的数值格式构造及理论分析  

Numerical Scheme Construction and TheoreticalAnalysis for Integral-Differential Equations of Volterra Type

在线阅读下载全文

作  者:罗紫洋 安文静 张新东[1] LUO Zi-yang;AN Wen-jing;ZHANG Xin-dong(School of Mathematical Sciences,Xinjiang Normal University,Urumqi 830017,China)

机构地区:[1]新疆师范大学数学科学学院,新疆乌鲁木齐830017

出  处:《兰州文理学院学报(自然科学版)》2022年第4期10-14,共5页Journal of Lanzhou University of Arts and Science(Natural Sciences)

基  金:国家自然科学基金(11861068);新疆维吾尔自治区自然科学基金杰出青年基金项目(2022D01E13)。

摘  要:本文研究了一类Volterra型微分-积分方程的数值格式构造及其理论分析.格式构造方面,利用有限差分方法进行时间和空间离散,对于积分项采用复合梯形求积公式进行处理.最后,给出了数值格式的稳定性分析和误差估计,其误差的收敛阶为Ο(τ+h^(4)),其中τ为时间步长,h为空间步长.In this paper,a numerical scheme construction and theoretical analysis was mainly developed for solving the Volterra integral-differential equations.In terms of scheme construction,the finite difference approximation issued for time and space derivative,and the compound trapezoidal quadrature formula issued for integral term.Finally,the unconditional stability and convergence were given.In addition,the error analysis was carried out,which showed that the convergence order was O(ι+h^(4)),whereιwas the time step,and h was the space step.

关 键 词:Volterra型微分-积分方程 有限差分 复合梯形求积公式 稳定性 误差分析 

分 类 号:O241.82[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象