Stability analysis for evolutionary variational-hemivariational inequalities with constraint sets  

在线阅读下载全文

作  者:Yi-bin Xiao Mou-tao Liu Tao Chen Nan-jing Huang 

机构地区:[1]School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731,China [2]College of Mathematics,Sichuan University,Chengdu 610064,China

出  处:《Science China Mathematics》2022年第7期1469-1484,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.11771067 and 11671282);the Applied Basic Project of Sichuan Province(Grant No.2019YJ0204);the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2019J095)。

摘  要:In this paper,we provide the stability analysis for an evolutionary variational-hemivariational inequality in the reflexive Banach space,whose data including the constraint set are perturbed.First,by using its perturbed data and the duality mapping,the perturbed and regularized problems for the evolutionary variational-hemivariational inequality are constructed,respectively.Then,by proving the unique solvability for the evolutionary variational-hemivariational inequality and its perturbed and regularized problems,we obtain two sequences called approximating sequences of the solution to the evolutionary variational-hemivariational inequality,and prove their strong convergence to the unique solution to the evolutionary variationalhemivariational inequality under different mild conditions.

关 键 词:evolutionary variational-hemivariational inequality L-pseudomonotone duality mapping Mosco convergence smallness condition 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象