突发公共卫生事件中基层政府的预警困境与治理对策  被引量:11

Governance Logic of Grass-Roots Government about Early Warning in Public Health Emergencies

在线阅读下载全文

作  者:李玉倩 李扬 Li Yuqian;Li Yang

机构地区:[1]南京晓庄学院教师教育学院,南京211171 [2]江苏现代信息社会研究基地 [3]江苏省社会科学院,南京210004 [4]江苏省社会科学院区域现代化研究院

出  处:《南京社会科学》2022年第5期75-82,共8页Nanjing Journal of Social Sciences

基  金:江苏省社科基金重点项目“新时代主流媒体创新传播研究”(19XWA001);国家社科基金“基于开放式创新的智慧城市隐私风险生态治理研究”(19BGL279)的阶段性成果。

摘  要:基层政府位于突发公共卫生事件监测、预警和报告的最前端,提高其在突发公共卫生事件中的预警能力,有助于为整体防控赢得宝贵时间。然而政治承包责任制、理性官僚制和知识—权力制的三重委托—代理,给突发公共卫生事件预警带来了现实困境,并且博弈分析证实了消极预警通常是优先策略。针对突发公共卫生事件预警的压力和结构性张力,需要遵循建设责任型政府和提高突发公共卫生事件治理能力两条基本路径,实现绩效型政府与责任型政府的统一,优化基层政府治理绩效评估机制,进一步完善突发公共卫生事件预警机制,优化突发公共卫生事件预警的知识—权力结构。The grassroots government is at the forefront of monitoring,early warning and reporting of public health emergencies.Improving its early warning capabilities for public health emergencies helps to win precious time for overall prevention and control.However,the triple principal-agent system of political contracting responsibility system,rational bureaucracy and knowledge-power system brings real dilemmas to early warning of public health emergencies,and game analysis confirms that negative early warning is usually a priority strategy.In response to the pressure and structural tension of public health emergency early warning,it is necessary to follow the two basic paths of building a responsible government and improving the ability to manage public health emergencies.At present,it is necessary to adopt four countermeasures and suggestions:realize the unification of performance-based government and responsible government,optimize the performance evaluation mechanism of grassroots government governance,further improve the early warning mechanism of public health emergencies,and optimize the knowledge-power structure for public health emergencies early warning.

关 键 词:基层政府 预警能力 委托代理 责任型政府 

分 类 号:C916.1[经济管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象