基于自适应对角加载的源数估计算法  被引量:1

Source Number Estimation Algorithm Based on Self-adaptive Diagonal Loading Value

在线阅读下载全文

作  者:马玲 赵联文[1] MA Ling;ZHAO Lian-wen(School of Mathematics, Southwest Jiaotong University, Chengdu 611756, China)

机构地区:[1]西南交通大学数学学院,成都611756

出  处:《科学技术与工程》2022年第13期5263-5268,共6页Science Technology and Engineering

摘  要:为解决对角加载技术用于信源数估计时对角加载量确定困难的问题,提出了一种新的基于自适应对角加载接收信号协方差矩阵的信源数估计算法。首先,分析接收信号协方差矩阵与噪声信号功率之间的协同变化关系,基于协方差矩阵的对角元素特征值分布特点,给出一种自适应的对角加载量确定方法。然后,将对角加载处理后的接受信号协方差矩阵与信息论准则结合,得到改进后的估计信源数算法。仿真实验结果表明:本文算法能同时在白噪声与色噪声环境中较好估计信源数,相较于基于信息论准则与盖氏圆盘估计法则的源数估计算法,本文算法在估计正确率以及稳定性上得到了不同程度的提升,具有较好的估计性能。In order to solve the problem that the diagonal loading value is difficult to be determined when the diagonal loading technique is used to estimate source number,a new source number estimation algorithm based on self-adaptive diagonal loading of received signal covariance matrix was proposed.Firstly,by analyzing the cooperative relationship between the covariance matrix of received signal and the power of noise signal,and according to the eigenvalue distribution of the diagonal elements of the covariance matrix,an adaptive method to determine the diagonal loading values was proposed.Then,an improved algorithm based on the information criterion was obtained by applying the covariance matrix that loaded by the diagonal loading value to the information theory criterion.The simulation results show that the number of sources can be well estimated by the proposed algorithm in both white noise and color noise environments in white or coloured noise environment.Compared with the source number estimation algorithm based on information theory criterion and Gerschgorin's disk estimation,the accuracy and stability of the proposed algorithm have improved to some extent,and it has better estimation performance.

关 键 词:信源数估计 对角加载 信息论准则 均匀线性阵列 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象