NDR和DIAL模型在宁波市社区2型糖尿病人群中预测心血管病发生风险的应用  

Applications of the NDR and DIAL models for risk prediction on cardiovascular disease in patients with type 2 diabetes in Ningbo

在线阅读下载全文

作  者:李倩倩 梁靖媛 王佳敏 沈鹏[2] 孙烨祥 陈奇[2] 邬金国 路平 张敬谊[3] 林鸿波[2] 唐迅[4] 高培[1,5] Li Qianqian;Liang Jingyuan;Wang Jiamin;Shen Peng;Sun Yexiang;Chen Qi;Wu Jinguo;Lu Ping;Zhang Jingyi;Lin Hongbo;Tang Xun;Gao Pei(Department of Epidemiology and Biostatistics,School of Public Health,Peking University,Beijing 100191,China;Yinzhou District Center for Disease Control and Prevention of Ningbo,Yinzhou 315100,China;Wonders Information Company Limited,Shanghai 201112,China;Center of Real-world Evidence Evaluation,Clinical Research Institute,Peking University,Beijing 100191,China;KeyLaboratory of Molecular Cardiovascular Sciences(Peking University),Ministry of Education,Beijing 100191,China)

机构地区:[1]北京大学公共卫生学院流行病与卫生统计学系,北京100191 [2]宁波市鄞州区疾病预防控制中心,宁波315100 [3]上海万达信息股份有限公司,上海201112 [4]北京大学临床研究所真实世界证据评价中心,北京100191 [5]北京大学分子心血管学教育部重点实验室,北京100191

出  处:《中华流行病学杂志》2022年第6期945-952,共8页Chinese Journal of Epidemiology

基  金:国家重点研发计划(2020YFC2003503);国家自然科学基金(81961128006,81973132)。

摘  要:目的在我国社区2型糖尿病人群中独立验证并比较基于瑞典糖尿病登记数据(NDR)建立的心血管病短期风险预测模型和糖尿病终生风险预测(DIAL)模型评估5年和10年心血管病发生风险的准确性。方法研究对象为2010年1月1日至2020年12月31日在中国鄞州电子健康档案研究中的基线无心血管病史且年龄在30~75岁的2型糖尿病队列人群。采用校准后的NDR模型评估研究对象5年心血管病风险,采用DIAL模型评估5年和10年心血管病发生风险,采用调整竞争风险的Kaplan-Meier法计算研究对象5年和10年心血管病实际发生风险。采用区分度C统计量、校准度χ^(2)值和校准图评价预测模型的准确性。结果经过中位7.0年的随访,83503名研究对象共发生7326例心血管病事件和2937例非心血管病死亡事件。在5年心血管病风险预测中,NDR模型对男性和女性发病风险分别高估39.4%和8.6%,DIAL模型分别高估14.6%和50.1%。在男性5年风险预测中DIAL模型区分度优于NDR模型,其C统计量(95%CI)分别为0.681(0.672~0.690)和0.667(0.657~0.677);女性中两模型C统计量(95%CI)分别为0.698(0.689~0.706)和0.699(0.690~0.708)。在10年风险预测中,DIAL模型准确度有所提高,在男性中低估1.6%,在女性中高估12.8%。结论在我国社区2型糖尿病人群中,校准后的NDR短期风险模型高估了5年心血管病风险,校准后的DIAL终生风险模型高估程度更严重;但随着预测年限延长到10年,DIAL模型预测准确性有所改善,体现了终生风险评估的价值,并提示需要建立适合我国2型糖尿病人群的心血管病终生风险预测模型。Objective To validate the performance of cardiovascular risk prediction models based on the Sweden National Diabetes Register(NDR)and Diabetes Lifetime-perspective prediction(DIAL)model for assessing risks of 5-year and 10-year cardiovascular disease(CVD)among Chinese patients with type 2 diabetes.Methods Based on the Chinese Electronic Health Records Research in Yinzhou study,83503 patients with type 2 diabetes aged 30-75 years without a history of CVD at baseline were included from January 1,2010 to December 31,2020.Recalibrated NDR model was used to estimate 5-year risk,while the recalibrated DIAL model was used to predict 5-year and 10-year risks.The competing events adjusted Kaplan-Meier analysis was used to obtain the observed cardiovascular events.Discrimination C statistics evaluated model accuracy,calibrationχ^(2) value,and calibration plots.Results Through a median follow-up of 7.0 years,7326 cardiovascular events,and 2937 non-vascular deaths were identified among a total of 83503 subjects.The recalibrated NDR model overestimated 5-year risk by 39.4%in men and 8.6%in women,whereas the overestimation for the recalibrated DIAL model was 14.6%in men and 50.1%in women.The DIAL model had a better discriminative ability(C-statistic=0.681,95%CI:0.672-0.690)than NDR model(C-statistic=0.667,95%CI:0.657-0.677)in 5-year risk prediction for men,and the models had a similar ability for women(C-statistic=0.699,95%CI:0.690-0.708 for NDR and C-statistic=0.698,95%CI:0.689-0.706 for DIAL).The prediction accuracy of the DIAL model was improved in the 10-year risk,with the underestimation being 1.6%for men and the overestimation being 12.8%for women.Conclusions Both recalibrated NDR and DIAL models overestimated 5-year cardiovascular risk in Chinese patients with type 2 diabetes,while the higher overestimation was shown using the DIAL model.However,the improvement was found in predicting 10-year CVD risk using the DIAL model,which suggested the value of lifetime risk prediction and indicated the need for research on the l

关 键 词:糖尿病 2型 心血管病风险评估 终生风险模型 队列研究 

分 类 号:R587.2[医药卫生—内分泌]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象