检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李迦雳 刘铎 陈咸彰 谭玉娟[1] 曾昭阳 LI Jiali;LIU Duo;CHEN Xianzhang;TAN Yujuan;ZENG Zhaoyang(College of Computer Science,Chongqing University,Chongqing400044,China)
出 处:《集成技术》2022年第3期23-41,共19页Journal of Integration Technology
基 金:国家自然科学基金项目(61802038,62072059)。
摘 要:在冯·诺依曼架构中,存储与计算的分离造成了存储墙问题,导致现有的系统架构难以应对大数据和人工智能时代的数据爆炸。数据的持续增长导致了计算范式的变化,研究者们开始尝试将计算单元移动到存储器中,即近数据处理技术。近数据处理技术是指利用存储控制器的计算能力,执行与数据存取紧密相关的任务,在减少数据迁移的同时,具有低延迟、高可扩展性和低功耗等优点,具有广阔的应用前景。该文首先介绍了近数据处理系统的架构,其次针对特定应用和面向通用场景的相关研究成果进行概述,并总结了软硬件平台和产业进展,最后展望了其未来的发展趋势。The isolation of storage and compute units in the Von Neumann architecture leads to the “storage wall” problem, which makes the existing system architecture hard to cope with the challenges of data explosion caused by the wide application of big data and artificial intelligence technologies. The continuous growth of data has led to an evolution in the computing paradigm. Researchers try to move the compute unit to the storage system, that is Near-Data Processing(NDP) technology. NDP technology refers to utilizing the computing power of the storage controller to perform I/O intensive computing tasks,which brings advantages such as low latency, high scalability, and low power consumption while reducing data movement, and has broad application prospects. This article first introduces the near-data computing architecture, subsequently outlines the research results of NDP systems for specific applications and some general scenarios, then summarizes the hardware and software platform and industry progress of NDP,finally looks into the future development trend of NDP technology.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7