检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许晨舟 杜涛 韩忠华[1,2] 昝博文 牟宇 张津泽 XU Chenzhou;DU Tao;HAN Zhonghua;ZAN Bowen;MOU Yu;ZHANG Jinze(School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072;National Key Laboratory of Science and Technology on Aerodynamic Design and Research,Xi’an 710072,China;Beijing Institute of Astronautical Systems Engineering,Beijing 100076,China)
机构地区:[1]西北工业大学航空学院,西安710072 [2]翼型、叶栅空气动力学国家级重点实验室,西安710072 [3]北京宇航系统工程研究所,北京100076
出 处:《实验流体力学》2022年第3期79-92,共14页Journal of Experiments in Fluid Mechanics
基 金:国家自然科学基金(11972305);航空基金(2019ZA053004);陕西省自然科学基金(2020JM-127);陕西省杰出青年科学基金(2020JC-31);国家数值风洞工程(NNW2019ZT6-A12)。
摘 要:机器学习数据融合方法可帮助降低飞行器气动数据库建立的成本,加快研制进度,目前已经成为飞行器设计方法领域越来越活跃的研究方向,但其在工程复杂问题方面的应用研究并不充分。将多种常见变可信度数据融合模型应用于运载火箭子级栅格舵落区控制的工程项目,在开展部分工况的风洞试验基础上,结合少量的CFD数值模拟结果,研究相关函数和不同模型预测完整工况气动特性数据的差异性。通过对比加法标度函数修正模型、Co-Kriging模型、分层Kriging模型和多可信度神经网络模型等4种不同的数据融合模型发现:高斯指数相关函数对气动建模问题的适应性更好;Co-Kriging模型对气动数据的内插表现最好;分层Kriging模型对内插的预测精度较高,外插效果不理想;多可信度神经网络模型在外插区域能获得更光滑、合理的预测结果。Machine learning data fusion method has attracted significant attention recently in aerodynamic database construction since it makes a trade-off between high prediction accuracy and low fitting cost by fusing samples of different fidelities. But the research on methods for complex engineering project is not sufficient. In this paper, several commonly used variablefidelity models(VFMs) of data fusion are applied to the control law design in the rocket first stage landing area control project with grid fins. Based on wind tunnel tests of partial test states,combined with CFD simulation results, VFMs successfully predict the whole aerodynamic characteristics of grid fins. Here, our objective is to compare the performances of these four VFM methods(AS-MFS, Co-Kriging, HK, MFNN) and the results show that: Gaussian exponential function is more suitable for aerodynamic modeling problems;Co-Kriging has the best performance in the interpolation of aerodynamic data;HK model has high prediction accuracy for interpolation but has poor performance for extrapolation;MFNN model can obtain smoother and more reasonable results in the extrapolation region.
关 键 词:变可信度模型 气动建模 数据融合 栅格舵 机器学习
分 类 号:V211.3[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.22.153