检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张朋举 丁蓉 蒋韬 ZHANG Peng-ju;DING Rong;JIANG Tao(School of information science and engineering,Ningbo University,Ningbo 315211,China)
机构地区:[1]宁波大学信息科学与工程学院,宁波315211
出 处:《无线通信技术》2022年第2期1-6,共6页Wireless Communication Technology
摘 要:深度学习具有出色的自动特征学习能力,比传统的机器学习方法具有更好的性能。注意力机制可以给予局部焦点更多的关注,而且还可以通过过滤掉无用的信息来降低计算复杂度。因此,具有注意力机制的深度学习可以有效实现自动特征学习,以及降低计算复杂度。本文针对认知无线电系统中主用户信号随机到达与离开时的频谱感知问题,提出了一种结合注意力机制的深度学习的感知方法。仿真结果表明,相比其它感知方法,所提出的频谱感知方法能够在主用户信号随机到达与离开的情况下有效工作及表现出优越的性能。Deep learning has excellent automatic feature learning capabilities and has better performance than traditional machine learning methods. The attention mechanism can give more attention to the local focus, and it can also reduce the computational complexity by filtering out useless information. Therefore, deep learning with attention mechanism can effectively realize automatic feature learning and reduce computational complexity. Aiming at the problem of spectrum sensing when the primary user signal arrives and departs randomly in the cognitive radio system, this paper proposes a deep learning sensing method combined with the attention mechanism. The simulation results show that, compared with other sensing methods, the proposed spectrum sensing method can work effectively and exhibit superior performance when the primary user signal arrives and departs randomly.
关 键 词:深度学习 注意力机制 认知无线电 频谱感知 认知用户 主用户
分 类 号:TN925[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7