检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔金荣[1,3] 郑鸿 谭建伟 刘心 CUI Jinrong;ZHENG Hong;TAN Jianwei
机构地区:[1]华南农业大学数学与信息学院,广东广州510642 [2]华南农业大学工程学院,广东广州510642 [3]广州市智慧农业重点实验室,广东广州510642
出 处:《智慧农业导刊》2022年第13期13-15,共3页JOURNAL OF SMART AGRICULTURE
基 金:广州市智慧农业重点实验室项目(201902010081)。
摘 要:水稻病害检测在农业生产中起着至关重要的作用。但是传统的病害检测方法需要耗费大量的人力、时间;另一方面,水稻的病害种类繁多,进行检测还需要专业且广泛的植物病害知识,加大检测的难度。因此开发基于机器学习、图像处理等智能化技术的水稻病害诊断方法,成为亟待解决的一大问题。文章基于高光谱、模式识别和深度学习技术对目前的水稻常见病害的检测识别方法进行总结,并讨论目前在水稻病害诊断方面研究的局限性,提出一些研究的建议。Rice disease detection plays an important role in agricultural production. However, the traditional disease detection methods need to consume a lot of manpower and time;on the other hand, there are many kinds of rice diseases, and professional and extensive plant disease knowledge is needed for detection, which increases the difficulty of detection. Therefore, the development of rice disease diagnosis methods based on intelligent technologies such as machine learning and image processing has become an urgent problem to be solved. In this paper, the current detection and recognition methods of common rice diseases were summarized based on hyperspectral, pattern recognition and deep learning techniques, the limitations of current research in rice disease diagnosis were discussed, and some research suggestions were put forward.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117