检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jia-Sheng Li Zhen Yang Ya-Zhong Luo
机构地区:[1]College of Aerospace Science and Engineering,National University of Defense Technology,Changsha 410073,China [2]Hunan Key Laboratory of Intelligent Planning and Simulation for Aerospace Missions,Changsha 410073,China
出 处:《Astrodynamics》2022年第2期95-120,共26页航天动力学(英文)
基 金:The authors acknowledge financial support from the National Natural Science Foundation of China(Nos.11902347 and 11972044).
摘 要:The collision probability computation of space objects plays an important role in space situational awareness,particularly for conjunction assessment and collision avoidance.Early works mainly relied on Monte Carlo simulations to predict collision probabilities.Although such simulations are accurate when a large number of samples are used,these methods are perceived as computationally intensive,which limits their application in practice.To overcome this limitation,many approximation methods have been developed over the past three decades.This paper presents a comprehensive review of existing space-object collision probability computation methods.The advantages and limitations of different methods are analyzed and a systematic comparison is presented.Advice regarding how to select a suitable method for different short-term encounter scenarios is then provided.Additionally,potential future research avenues are discussed.
关 键 词:collision probability space situational awareness collision avoidance ASTRODYNAMICS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171