检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiang Gao Yang-Yang Xu Shu-Zhong Zhang
机构地区:[1]Department of Industrial and Systems Engineering,University of Minnesota,Minneapolis,USA [2]Department of Mathematical Sciences,Rensselaer Polytechnic Institute,Troy,USA
出 处:《Journal of the Operations Research Society of China》2019年第2期205-250,共46页中国运筹学会会刊(英文)
基 金:This work is partly supported by the National Science Foundation(Nos.DMS-1719549 and CMMI-1462408).
摘 要:In this paper,we propose a randomized primal–dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints.Assuming mere convexity,we establish its O(1/t)convergence rate in terms of the objective value and feasibility measure.The framework includes several existing algorithms as special cases such as a primal–dual method for bilinear saddle-point problems(PD-S),the proximal Jacobian alternating direction method of multipliers(Prox-JADMM)and a randomized variant of the ADMM for multi-block convex optimization.Our analysis recovers and/or strengthens the convergence properties of several existing algorithms.For example,for PD-S our result leads to the same order of convergence rate without the previously assumed boundedness condition on the constraint sets,and for Prox-JADMM the new result provides convergence rate in terms of the objective value and the feasibility violation.It is well known that the original ADMM may fail to converge when the number of blocks exceeds two.Our result shows that if an appropriate randomization procedure is invoked to select the updating blocks,then a sublinear rate of convergence in expectation can be guaranteed for multi-block ADMM,without assuming any strong convexity.The new approach is also extended to solve problems where only a stochastic approximation of the subgradient of the objective is available,and we establish an O(1/√t)convergence rate of the extended approach for solving stochastic programming.
关 键 词:Primal-dual method Alternating direction method of multipliers(ADMM) Randomized algorithm Iteration complexity·First-order stochastic approximation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4