Analytical solution of a hyperbolic partial differential equation and its application  

在线阅读下载全文

作  者:Ping He Yangmin Li 

机构地区:[1]Department of Electromechanical Engineering,University of Macao,Taipa,Macao [2]Department of Industrial and Systems Engineering,The Hong Kong Polytechnic University,Hung Hom,Hong Kong

出  处:《International Journal of Intelligent Computing and Cybernetics》2017年第2期183-199,共17页智能计算与控制论国际期刊(英文)

基  金:supported in part by the National Natural Science Foundation of China(51575544,51275353);Macao Science and Technology Development Fund(110/2013/A3,108/2012/A3);the Research Committee of University of Macao(MYRG2015-00194-FST).

摘  要:Purpose-The purpose of this paper is to investigate the analytical solution of a hyperbolic partial differential equation(PDE)and its application.Design/methodology/approach-The change of variables and the method of successive approximations are introduced.The Volterra transformation and boundary control scheme are adopted in the analysis of the reaction-diffusion system.Findings-A detailed and complete calculation process of the analytical solution of hyperbolic PDE(1)-(3)is given.Based on the Volterra transformation,a reaction-diffusion system is controlled by boundary control.Originality/value-The introduced approach is interesting for the solution of hyperbolic PDE and boundary control of the reaction-diffusion system.

关 键 词:Analytical solution Gain Kernel PDE Hyperbolic equation Neumann boundary condition Volterra integral transformation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象