检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Mathematics,Nanjing University,Nanjing 210023,China [2]Institute for Data and Decision Analytics,The Chinese University of Hong Kong,Shenzhen 518172,China
出 处:《Journal of the Operations Research Society of China》2021年第2期307-319,共13页中国运筹学会会刊(英文)
基 金:This work was supported in part by Shenzhen Fundamental Research Fund(Nos.JCYJ-20170306141038939,KQJSCX-20170728162302784,ZDSYS-201707251409055)via the Shenzhen Research Institute of Big Data;The work of Jun-Feng Yang was supported by the National Natural Science Foundation of China(Nos.11771208,11922111,11671195).
摘 要:We establish local convergence results for a generic algorithmic framework for solving a wide class of equality constrained optimization problems.The framework is based on applying a splitting scheme to the augmented Lagrangian function that includes as a special case the well-known alternating direction method of multipliers(ADMM).Our local convergence analysis is free of the usual restrictions on ADMM-like methods,such as convexity,block separability or linearity of constraints.It offers a much-needed theoretical justification to the widespread practice of applying ADMM-like methods to nonconvex optimization problems.
关 键 词:Alternating direction method of multipliers Nonlinear splitting Stationary iterations Spectral radius Local linear convergence
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7