Local Linear Convergence of an ADMM-Type Splitting Framework for Equality Constrained Optimization  

在线阅读下载全文

作  者:Jun-Feng Yang Yin Zhang 

机构地区:[1]Department of Mathematics,Nanjing University,Nanjing 210023,China [2]Institute for Data and Decision Analytics,The Chinese University of Hong Kong,Shenzhen 518172,China

出  处:《Journal of the Operations Research Society of China》2021年第2期307-319,共13页中国运筹学会会刊(英文)

基  金:This work was supported in part by Shenzhen Fundamental Research Fund(Nos.JCYJ-20170306141038939,KQJSCX-20170728162302784,ZDSYS-201707251409055)via the Shenzhen Research Institute of Big Data;The work of Jun-Feng Yang was supported by the National Natural Science Foundation of China(Nos.11771208,11922111,11671195).

摘  要:We establish local convergence results for a generic algorithmic framework for solving a wide class of equality constrained optimization problems.The framework is based on applying a splitting scheme to the augmented Lagrangian function that includes as a special case the well-known alternating direction method of multipliers(ADMM).Our local convergence analysis is free of the usual restrictions on ADMM-like methods,such as convexity,block separability or linearity of constraints.It offers a much-needed theoretical justification to the widespread practice of applying ADMM-like methods to nonconvex optimization problems.

关 键 词:Alternating direction method of multipliers Nonlinear splitting Stationary iterations Spectral radius Local linear convergence 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象