基于关联规则挖掘算法的A股股票联动性分析  被引量:1

Association rule mining algorithm based analysis of A-share stock linkage

在线阅读下载全文

作  者:殷丽凤[1] 李梦琳 YIN Li-feng;LI Meng-lin(School of Computer and Communication Engineering,Dalian Jiaotong University,Dalian 116028,China)

机构地区:[1]大连交通大学计算机与通信工程学院,辽宁大连116028

出  处:《云南民族大学学报(自然科学版)》2022年第4期486-492,共7页Journal of Yunnan Minzu University:Natural Sciences Edition

基  金:国家自然科学基金(61771087).

摘  要:为了更好地观察国内A股间的联动性,针对股票效应的滞后性问题,提出了一种基于时序的改进关联规则挖掘算法Gap-Apriori.实验采用Apriori、FP-growth、Eclat、Gap-Apriori 4种关联规则挖掘算法,对我国2007年到2021年间的A股交易数据进行了关联分析.实验结果表明,Apriori算法较其他3种算法更适用于高维股票数据挖掘,改进算法Gap-Apriori能够分析任意周期内的股票联动状态,有效地提高了算法的运行效率.As one of the hotspots in the financial field,stock analysis has attracted a large number of researchers to join it.Finding patterns in massive stock historical data and predicting stock trends has become a hot research topic.In order to better observe the linkage between domestic A shares,aiming at the lag of stock comovement,an improved association rule mining algorithm gap Apriori based on time series is proposed.The experiment uses four association rule mining algorithms,namely,Apriori,FP-growth,Eclat,and Gap-Apriori,to conduct an association analysis on the A-share transaction data of China from 2007 to 2021.The experimental results show that the Apriori algorithm is more suitable for high-dimensional stock data mining than the other three algorithms.The improved algorithm Gap-Apriori can analyze the stock linkage status in any period,which effectively improves the efficiency of the algorithm.

关 键 词:数据挖掘 股票分析 关联规则 频繁项集 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象