滴灌土壤湿润体特征及体积计算方法研究  被引量:1

Study on characteristics and volume calculation methods of wetting body under drip irrigation

在线阅读下载全文

作  者:张前英 吴海平[1] 巴利珍 连萌 冯泽程 Zhang Qianying;Wu Haiping;Ba Lizhen;Lian Meng;Feng Zecheng(College of Agricultural Engineering,Shanxi Agricultural University,Jinzhong Shanxi 030801,China)

机构地区:[1]山西农业大学农业工程学院,山西晋中030801

出  处:《山西农业大学学报(自然科学版)》2022年第3期114-122,共9页Journal of Shanxi Agricultural University(Natural Science Edition)

基  金:山西省现代农机装备引进试验项目(JNJK2020-04);山西省重点研发项目(201803D221027-5)。

摘  要:[目的]本研究旨在探明滴灌土壤湿润体特征变化运移规律、并提出一种体积等效计算方法,为准确便捷计算体积、指导精准灌溉提供参考。[方法]进行单点源滴灌试验,采用二因素方差分析、幂函数拟合、线性方程拟合研究了1、2、4 L·h^(-1)滴头流量在1、5、10、15、30、45、60 min灌水时间下湿润体特征的变化运移规律,并对3种湿润体体积计算方法进行相对误差对比分析。[结果]流量和灌水时间对湿润锋运移距离、湿润体体积有极显著影响(P<0.01),对湿润体地表面积有显著影响(P<0.05)。不同滴头流量下,水平、垂直最大湿润距离、地表面积、体积均与灌水时间有良好幂函数关系,R2均大于0.93。在0.05水平上,4 L·h^(-1)流量水平最大湿润距离显著大于1、2 L·h^(-1)流量,2、4 L·h^(-1)流量垂直最大湿润距离显著大于1 L·h^(-1)流量。1、2、4 L·h^(-1)流量的地表面积增长速率在灌溉初期最大,分别为43.47、123.4、281.4 cm^(2)·min^(-1),随后逐渐降低,在灌溉后期(45~60 min)分别降为3.76、9.78、41.43 cm^(2)·min^(-1)。湿润体体积随滴头流量倍增而同步倍增,与灌水量呈良好线性关系,R^(2)均大于0.99。等效法、旋转法、椭球公式法平均相对误差分别为13.20%、56.61%、21.02%,最大相对误差分别为-46.27%、136.46%、79.71%。[结论]湿润体特征变化规律研究及其等效法体积测算方法可为精确控制滴灌范围,科学选择滴灌参数提供借鉴。[Objective]It is of great significance to explore the change and migration law of soil wetting body in drip irrigation and to propose a volumetric equivalent calculation method,which provides a reference for accurate and convenient volume calculation and guidance for precise irrigation.[Methods]A single point source drip irrigation experiment was carried out.Based on the two-factor analysis of variance,power function fitting and linear equation fitting were applied to investigate the movement of the characteristics of wetting body under different flow rate of 1,2,4 L·h^(-1)dripper at different irrigation time(1,5,10,15,30,45,60 min),and the relative errors of three volume calculation methods were compared and analyzed.[Results]The flow rate and irrigation time had extremely significant effects on the migration distance and the volume of the wetting body(P<0.01),and had a significant effect on the surface area(P<0.05).Under different dripper flow rates,the horizontal and vertical maximum wetting distance,ground surface area and volume all had a good power function relationship with the irrigation time,and R2 was greater than 0.93.At the level of 0.05,the horizontal maximum wetting distance of 4 L·h^(-1) flow rate was significantly greater than that of 1,2 L·h^(-1) flow rate.The vertical maximum wetting distance of 2,4 L·h^(-1) flow was significantly greater than that of 1 L·h^(-1)flow rate.The enlarged rates of the land surface area at 1,2 and 4 L·h^(-1) flow were 43.47,123.4 and 281.4 cm^(2)·min^(-1)at the early irrigation stage,and then gradually decreased to 3.76,9.78 and 41.43 cm^(2)·min^(-1)at the late irrigation stage(45~60 min),respectively.The volume of the wet body increased synchronously with the dripper flow rate and showed a good linear relationship with the irrigation amount,with R^(2)greater than 0.99.The average relative errors of the equivalent method,rotation method,and ellipsoid formula method were 13.20%,56.61%,and 21.02%,respectively,and the maximum relative errors were−46.27%,136.46%

关 键 词:滴灌 湿润体 体积计算 

分 类 号:S275.6[农业科学—农业水土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象