Operating limits and features of direct air capture on K_(2)CO_(3)/ZrO_(2) composite sorbent  

在线阅读下载全文

作  者:Vladimir S.Derevschikov Janna V.Veselovskaya Anton S.Shalygin Dmitry A.Yatsenko Andrey Z.Sheshkovas Oleg N.Martyanov 

机构地区:[1]Boreskov Institute of Catalysis SB RAS,Akademika Lavrentieva Av.5,630090 Novosibirsk,Russia [2]Novosibirsk State University,Pirogova Str.1,630090 Novosibirsk,Russia

出  处:《Chinese Journal of Chemical Engineering》2022年第6期11-20,共10页中国化学工程学报(英文版)

基  金:This work was supported by Russian Science Foundation(19-73-00079).The authors also thank Leonova A.A.for performing N2 adsorption measurements.

摘  要:Potassium carbonate-based sorbents are prospective materials for direct air capture(DAC).In the present study,we examined and revealed the influence of the temperature swing adsorption(TSA)cycle conditions on the CO_(2) sorption properties of a novel aerogel-based K_(2)CO_(3)/ZrO_(2) sorbent in a DAC process.It was shown that the humidity and temperature drastically affect the sorption dynamic and sorption capacity of the sorbent.When a temperature at the sorption stage was 29℃ and a water vapor pressure P_(H2O) in the feed air was 5.2 mbar(1 bar=105 Pa),the composite material demonstrated a stable CO_(2) sorption capacity of 3.4%(mass).An increase in sorption temperature leads to a continuous decrease in the CO_(2) absorption capacity reaching a value of 0.7%(mass)at T=80℃.The material showed the retention of a stable CO_(2) sorption capacity for many cycles at each temperature in the range.Increasing PH2O in the inlet air from 5.2 to 6.8 mbar leads to instability of CO_(2) sorption capacity which decreases in the course of 3 consecutive TSA cycles from 1.7%to 0.8%(mass)at T=29℃.A further increase in air humidity only facilitates the deterioration of the CO_(2) sorption capacity of the material.A possible explanation for this phenomenon could be the filling of the porous system of the sorbent with solid reaction products and an aqueous solution of potassium salts,which leads to a significant slowdown in the CO_(2) diffusion in the composite sorbent grain.To investigate the regeneration step of the TSA cycle in situ,the macro ATRFTIR(attenuated total reflection Fourier-transform infrared)spectroscopic imaging was applied for the first time.It was shown that the migration of carbonate-containing species over the surface of sorbent occurs during the thermal regeneration stage of the TSA cycle.The movement of the active component in the porous matrix of the sorbent can affect the sorption characteristics of the composite material.The revealed features make it possible to formulate the requirements and limitati

关 键 词:Zirconia aerogel Potassium carbonate Carbon dioxide Direct air capture Fourier-transform infrared spectroscopic imaging 

分 类 号:TQ424[化学工程] X701[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象