混合颗粒系重叠图像分割与分类方法研究  被引量:4

Research on Segmentation and Classification Methods of Mixed Overlapped Particle Images

在线阅读下载全文

作  者:陈宗元 张磊磊 赵宁宁 苏明旭[1] CHEN Zong-yuan;ZHANG Lei-lei;ZHAO Ning-ning;SU Ming-xu(School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学能源与动力工程学院,上海200093

出  处:《计量学报》2022年第6期746-753,共8页Acta Metrologica Sinica

基  金:国家自然科学基金(51776129);中国航发四川燃气涡轮研究院外委课题。

摘  要:针对传统图像处理算法对重叠颗粒的分割困难,引入Mask R-CNN深度学习算法并做针对性改进,通过调整残差网络ResNet-101加速训练,提出双FPN结构实现全局特征融合,使用Soft-NMS避免重叠颗粒漏检。设计了颗粒重叠图像实验系统,采集单一球形、球形与不规则混合多分散颗粒重叠图像用于分割研究。实验结果表明:该方法对混合颗粒分类准确率为91%,召回率为92%,均优于传统算法;其应用于含气泡的一水柠檬酸结晶过程中结晶的在线测量,所得结晶颗粒中位径误差为3.8%,数目误差为-1.3%。所提方法为混合颗粒的重叠图像分析提供了思路,后续有望解决图像法结晶过程后期在线监测乏力与气泡干扰的问题。Mask R-CNN was introduced to overcome the segmentation difficulties of traditional image processing algorithms for overlapped particle images.By adjusting residual network ResNet-101 to accelerate training,a double FPN structure was proposed to achieve global feature fusion,and soft-NMS was used to avoid o overlapped particle missing detection.A particle overlapped image experiment system was designed to acquire single spherical,spherical and irregular mixed multi-dispersed overlapped particle images for segmentation analysis.The experimental results show that the present classification accuracy is 91%,and the recall rate is 92%,which are both better than the traditional algorithms.When applied to the real-time measurement of crystallization and bubbles in the crystallization process of citric acid monohydrate,the method yields the errors around 3.8%for median diameter and-1.6%for the counting number of crystal particles.The proposed method provides a clue for analysis of overlapped mixed particle images,which is expected to solve the problems of image analysis at late stage of the crystallization process and eliminate the interference of bubbles involved during real-time monitoring.

关 键 词:计量学 混合颗粒 重叠图像 颗粒分割 粒径分布 一水柠檬酸 结晶 深度学习 

分 类 号:TB937[一般工业技术—计量学] TB96[机械工程—测试计量技术及仪器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象