基于正则化线性调频模式追踪算法的信号消噪方法及其应用  

Signal Denoising Method Based on Regularized Chirp Mode Pursuit Algorithm and Its Applications

在线阅读下载全文

作  者:上官甲新 张淑清[1] 郑龙江[1] 姜安琦 艾洪克 张立国[1] 刘海涛 SHANGGUAN Jia-xin;ZHANG Shu-qing;ZHENG Long-jiang;Jiang An-qi;AI Hong-ke;ZHANG Li-guo;LIU Hai-tao(Institute of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China;Tangshan Power Supply Company of North Hebei Electric Power Co.Ltd,Tangshan,Hebei 063000,China)

机构地区:[1]燕山大学电气工程学院,河北秦皇岛066004 [2]国网冀北电力有限公司唐山供电公司,河北唐山063000

出  处:《计量学报》2022年第6期799-805,共7页Acta Metrologica Sinica

基  金:国家重点研发计划重点专项(2021YFB3201600);河北省自然科学基金(F2020203058,E2018203339);河北省重点研发计划项目(18211833D);中央引导地方科技发展专项资金项目(199477141G)。

摘  要:信号在采集过程中存在的噪声会给后续工作造成一定程度的困难,因此消除噪声干扰是准确进行下一步工作的关键问题。提出了一种正则化线性调频模式追踪(regularized chirp mode pursuit,RCMP)算法,该算法通过先验频率信息及递归框架提取信号中的每一个信号模式,具有一定的自适应性。将提出的RCMP算法应用到传感器数据降噪中,通过仿真信号和实际信号研究了RCMP算法的去噪性能。同时,通过与EMD结合区间阈值的降噪方法、CEEMDAN结合区间阈值的降噪方法以及VMD结合相关系数的降噪方法进行对比,验证了所提方法的可行性和优越性。The noise in the signal acquisition process will cause a certain degree of difficulty to the follow-up work,so the elimination of noise interference is the key problem for the accurate next work.A regularized chirp mode pursuit(RCMP)algorithm is proposed.The algorithm extracts each chirp mode from the signal through a priori frequency information and a recursive framework,which has a certain degree of adaptability.The proposed RCMP algorithm is applied to the noise reduction of sensor data,and the noise reduction performance of the RCMP algorithm is studied through simulatd signals and actual signals.At the same time,the feasibility and superiority of the proposed method are verified by comparing the noise reduction method with EMD combined with interval threshold,CEEMDAN combined with interval threshold and VMD combined with correlation coefficient.

关 键 词:计量学 信号消噪 正则化线性调频模式 追踪算法 递归框架 

分 类 号:TB973[一般工业技术—计量学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象