A novel global harmony search method based off-line tuning of RFNN for adaptive control of uncertain nonlinear systems  

在线阅读下载全文

作  者:Fouad Allouani Djamel Boukhetala Farès Boudjema Gao Xiao-Zhi 

机构地区:[1]Automatic Control Department,Ecole Nationale Polytechnique(ENP),Algiers,Algeria [2]Department of Industrial Engineering,University of Khenchela,Khenchala,Algeria [3]Department of Electrical Engineering and Automation,Aalto University School of Electrical Engineering,Aalto,Finland

出  处:《International Journal of Intelligent Computing and Cybernetics》2015年第1期69-98,共30页智能计算与控制论国际期刊(英文)

摘  要:Purpose–The two main purposes of this paper are:first,the development of a new optimization algorithm called GHSACO by incorporating the global-best harmony search(GHS)which is a stochastic optimization algorithm recently developed,with the ant colony optimization(ACO)algorithm.Second,design of a new indirect adaptive recurrent fuzzy-neural controller(IARFNNC)for uncertain nonlinear systems using the developed optimization method(GHSACO)and the concept of the supervisory controller.Design/methodology/approach–The novel optimization method introduces a novel improvization process,which is different from that of the GHS in the following aspects:a modified harmony memory representation and conception.The use of a global random switching mechanism to monitor the choice between the ACO and GHS.An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism.The developed optimization method is applied for parametric optimization of all recurrent fuzzy neural networks adaptive controller parameters.In addition,in order to guarantee that the system states are confined to the safe region,a supervisory controller is incorporated into the IARFNNC global structure.Findings–First,to analyze the performance of GHSACO method and shows its effectiveness,some benchmark functions with different dimensions are used.Simulation results demonstrate that it can find significantly better solutions when compared with the Harmony Search(HS),GHS,improved HS(IHS)and conventional ACO algorithm.In addition,simulation results obtained using an example of nonlinear system shows clearly the feasibility and the applicability of the proposed control method and the superiority of the GHSACO method compared to the HS,its variants,particle swarm optimization,and genetic algorithms applied to the same problem.Originality/value–The proposed new GHS algorithm is more efficient than the original HS method and its most known variants IHS and GHS.The proposed control method

关 键 词:Adaptive recurrent fuzzy-neural control Ant colony optimization(ACO) Harmony Search(HS) Hybrid optimization methods 

分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象