Resource-Constrained Edge AI with Early Exit Prediction  

在线阅读下载全文

作  者:Rongkang Dong Yuyi Mao Jun Zhang 

机构地区:[1]Department of Electronic and Information Engineering,The Hong Kong Polytechnic University,Hong Kong 999077,China [2]Department of Electronic and Computer Engineering,The Hong Kong University of Science and Technology,Hong Kong 999077,China

出  处:《Journal of Communications and Information Networks》2022年第2期122-134,共13页通信与信息网络学报(英文)

基  金:fund of the Hong Kong Polytechnic University(P0038174)。

摘  要:By leveraging the data sample diversity,the early-exit network recently emerges as a prominent neural network architecture to accelerate the deep learning inference process.However,intermediate classifiers of the early exits introduce additional computation overhead,which is unfavorable for resource-constrained edge artificial intelligence(AI).In this paper,we propose an early exit prediction mechanism to reduce the on-device computation overhead in a device-edge co-inference system supported by early-exit networks.Specifically,we design a low-complexity module,namely the exit predictor,to guide some distinctly“hard”samples to bypass the computation of the early exits.Besides,considering the varying communication bandwidth,we extend the early exit prediction mechanism for latency-aware edge inference,which adapts the prediction thresholds of the exit predictor and the confidence thresholds of the early-exit network via a few simple regression models.Extensive experiment results demonstrate the effectiveness of the exit predictor in achieving a better tradeoff between accuracy and on-device computation overhead for early-exit networks.Besides,compared with the baseline methods,the proposed method for latency-aware edge inference attains higher inference accuracy under different bandwidth conditions.

关 键 词:artificial intelligence(AI) edge AI device-edge cooperative inference early-exit network early exit prediction 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象