检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Dingke Yu Xin Wang Wenwei Fang Zixian Ma Bing Lan Chunyi Song Zhiwei Xu
机构地区:[1]Institute of Marine Electronic and Intelligent System.Ocean College.Zhejiang University.Zhoushan 316021,China [2]Engineering Research Center of Oceanic Sensing Technology and Equipment,the Ministry of Education.Zhoushan 316021,China.Donghai Lab,Zhoushan 316021.China
出 处:《Journal of Communications and Information Networks》2022年第2期202-213,共12页通信与信息网络学报(英文)
基 金:National Natural Sci-ence Foundation of China(NSFC)(61971379);Key Research and Development Program of Zhejiang Province(2020C03100);Leading Innovative and Entrepreneur Team In-troduction Program of Zhejiang(2018R01001);Fundamental Research Funds for the Central Universities(226202200096);Program of Innovation 2030 on Smart Ocean in Zhejiang University(129000*194232201)。
摘 要:The direction of arrival(DOA)is approximated by first-order Taylor expansion in most of the existing methods,which will lead to limited estimation accuracy when using coarse mesh owing to the off-grid error.In this paper,a new root sparse Bayesian learning based DOA estimation method robust to gain-phase error is proposed,which dynamically adjusts the grid angle under coarse grid spacing to compensate the off-grid error and applies the expectation maximization(EM)method to solve the respective iterative formula-based on the prior distribution of each parameter.Simulation results verify that the proposed method reduces the computational complexity through coarse grid sampling while maintaining a reasonable accuracy under gain and phase errors,as compared to the existing methods.
关 键 词:direction of arrival estimation gain-phase error root sparse Bayesian learning off-grid error
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222