检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Computing Science,Simon Fraser University,Burnaby,Canada
出 处:《International Journal of Intelligent Computing and Cybernetics》2015年第4期312-329,共18页智能计算与控制论国际期刊(英文)
摘 要:Purpose–In this work,the authors show the performance of the proposed diploid scheme(a representation where each individual contains two genotypes)with respect to two dynamic optimization problems,while addressing drawbacks the authors have identified in previous works which compare diploid evolutionary algorithms(EAs)to standard EAs.The paper aims to discuss this issue.Design/methodology/approach–In the proposed diploid representation of EA,each individual possesses two copies of the genotype.In order to convert this pair of genotypes to a single phenotype,each genotype is individually evaluated in relation to the fitness function and the best genotype is presented as the phenotype.In order to provide a fair and objective comparison,the authors make sure to compare populations which contain the same amount of genetic information,where the only difference is the arrangement and interpretation of the information.The two representations are compared using two shifting fitness functions which change at regular intervals to displace the global optimum to a new position.Findings–For small fitness landscapes the haploid(standard)and diploid algorithms perform comparably and are able to find the global optimum very quickly.However,as the search space increases,rediscovering the global optimum becomes more difficult and the diploid algorithm outperforms the haploid algorithm with respect to how fast it relocates the new optimum.Since both algorithms use the same amount of genetic information,it is only fair to conclude it is the unique arrangement of the diploid algorithm that allows it to explore the search space better.Originality/value–The diploid representation presented here is novel in that instead of adopting a dominance scheme for each allele(value)in the vector of values that is the genotype,dominance is adopted across the entire genotype in relation to its homologue.As a result,this representation can be extended across any alphabet,for any optimization function.
关 键 词:Evolutionary computation Genetic algorithms DIPLOIDY Dynamic optimization
分 类 号:TN9[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7