基于改进Logistic回归算法的运动员强度训练关节损伤预测方法  被引量:1

Prediction Method of Joint Injury in Intensity Training Based on Improved Logistic Regression Algorithm

在线阅读下载全文

作  者:朱春 ZHU Chun(Department of Physical Education,Wuhu Vocational and Technical College,Wuhu,Anhui 241003,China)

机构地区:[1]安徽省芜湖职业技术学院体育教学部,安徽芜湖241003

出  处:《河北北方学院学报(自然科学版)》2022年第7期13-18,共6页Journal of Hebei North University:Natural Science Edition

基  金:安徽省教育厅重点项目:“大学生体质健康测试成绩影响因素的实证性研究-以安徽省高校为例”(SK2021A0928)。

摘  要:为了降低强度运动训练对运动员关节组织造成的损伤,提高运动员强度训练关节损伤预测精度,对运动员关节部位进行针对性保护,提出了基于改进Logistic回归算法的运动员强度训练关节损伤预测方法。通过定义运动员关节共线能力,确定关节组织相关的抗损条件,根据应用回归方差统计结果,完成基于改进Logistic回归的关节能力分析,划分强度训练过程中的建模网格,计算关节响应参数,确定损伤冲击量的实际数值水平,构建运动员强度训练关节损伤预测模型,实现对强度训练关节损伤的预测。实验结果表明,体重为60kg运动员,关节承压达到体重的8倍时,会出现明显的损伤现象,预测模型的实验结果与理想数值结果一致,能够有效提高运动员强度训练关节损伤预测精度,满足运动员关节部位的针对性保护需求。To reduce the injury of joint tissue caused by intensity training,improve the accuracy of joint injury prediction,and protect the joints of athletes,an improved Logistic regression method was proposed.According to the statistical results of regression variance,the joint capacity analysis based on the improved logistic regression was completed and the modeling grid was divided.The joint response parameters were calculated and the actual numerical level of injury impact was determined.And the prediction model of joint injury in intensity training of athletes was constructed to predict the joint injury in intensity training.The results showed that when the joint pressure load of an athlete with the weight of 60 kg reached 8 times of the body weight,obvious injury phenomenon occured.The experimental results of the proposed model were consistent with the ideal numerical results,which could effectively improve the accuracy of the prediction of joint injury in intensity training and meet the specific protection needs of athletes’joints.

关 键 词:改进Logistic回归算法 强度训练 关节损伤 损伤冲击量 

分 类 号:TP841[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象