检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:解振学 林帆 王若谷[3] 张耀 高欣 王建学[2] XIE Zhenxue;LIN Fan;WANG Ruogu;ZHANG Yao;GAO Xin;WANG Jianxue(State Grid Shaanxi Electric Power Materials Company,Xi’an 710054,China;Shaanxi Province Key Laboratory of Smart Grid,Xi’an Jiaotong University,Xi’an 710049,China;State Grid Shaanxi Electric Power Research Institute,Xi’an 710100,China)
机构地区:[1]国网陕西物资公司,陕西西安710054 [2]陕西省智能电网重点实验室,西安交通大学陕西西安710049 [3]国网陕西电力科学研究院,陕西西安710100
出 处:《智慧电力》2022年第7期45-51,共7页Smart Power
基 金:国家自然科学基金资助项目(51907151);陕西省重点研发计划重点产业创新链项目(2017ZDCXL-GY-02-03);国网陕西省电力公司科技项目(B626KY190005)。
摘 要:光伏发电功率预测对于电力系统安全可靠运行以及提高光伏发电产业经济效益具有重要意义。提出一种基于时序动态回归的超短期光伏发电功率预测方法,仅需要历史光伏发电功率数据与数值天气预报作为输入。首先建立光伏发电功率与地表太阳辐射累计值的回归模型,再建立ARIMA模型预测回归残差序列,最后引入傅里叶谐波序列刻画日季节性。根据线性形式与对数形式的回归公式提出两种预测模型,综合二者形成最终的混合预测方法。算例结果表明,与一般时序模型相比,该方法在超短期预测方面预测精度更高。Photovoltaic(PV)power forecasting is of great significance for power system reliability and economic benefits of PV industry.A very short-term PV power forecasting method based on time-series dynamic regression model is proposed.Only historical PV power output and numerical weather prediction(NWP)are needed as input data.A regression model is firstly established between PV power output and surface solar radiation(SSRD).ARIMA model is used to forecast the regression residual term.Finally,Fourier harmonic time-series is introduced to characterize the daily seasonality of PV power output.Two concrete forecasting models are proposed respectively based on linear regression and logarithmic regression,which are combined to form a hybrid forecasting method.The results of our experiment show that compared with traditional time-series models,the proposed method is of higher accuracy for very short-term forecasting.
关 键 词:超短期预测 光伏发电预测 时序动态回归 ARIMA 谐波序列
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3