检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郑国峰 林鑫[1] 张承伟 肖攀[1] 张学东 ZHENG Guofeng;LIN Xin;ZHANG Chengwei;XIAO Pan;ZHANG Xuedong(China Automotive Engineering Research Institute Co. , Ltd. , Chongqing 401122, China;School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
机构地区:[1]中国汽车工程研究院股份有限公司,重庆401122 [2]重庆交通大学机电与车辆工程学院,重庆400074
出 处:《重庆理工大学学报(自然科学)》2022年第6期96-104,共9页Journal of Chongqing University of Technology:Natural Science
基 金:重庆市教委科学技术研究计划项目(KJQN2021000713);公共交通装备设计与系统集成重庆市重点实验室项目(CKLPTEDSI-KFKT-202108)。
摘 要:提出了基于主成分分析-学习向量量化(PCA-LVQ)神经网络智能算法的行驶工况的识别方法。基于用户车联网数据,通过运动学片段划分后,首先对速度、刹车频次、驾驶时间等多维度特征参数进行主成分分析(principal component analysis,PCA),实现输入信息降维处理,避免冗余信息带来的识别误差。其次将降维后的信息输入到LVQ神经网络模型中进行训练,并将模型用于用户典型驾驶工况的识别,分别对模型识别的影响因素进行研究。结果表明:基于PCA-LVQ智能算法的行驶工况识别方法能够有效进行工况识别,工况识别的精度与运动学片段长度相关,还受训练样本量和识别量的影响,但不受工况顺序影响。In machine learning,Principal Components Analysis(PCA)and Learning Vector Quantization(LVQ)are two common intelligent algorithms and usually used for data dimension reduction and classification,respectively.The PCA is an effective method that adoptsan orthogonal transformation to transforms the original set of variables into a smaller set of linear combinations that account for most of the variance in the original set.And the LVQ is an adaptive method for data classification based on training data with the desired class information.The combination of both algorithms(PCA-LVQ)can identify key information in a large amount of complex information and then classification.The PCA-LVQ algorithm could greatly improve the classification accuracy compared to the LVQ algorithm.a driving conditionidentification method based on the PCA-LVQ intelligent algorithm is proposedin this study.The typical driving conditions during the driving process of the car have a significant impact on the durability performance of the vehicle.The percentage of typical driving conditions of customer used in the development or revision of vehicle durability specifications directly determines whether the specifications can reflect the actual driving conditions of vehicle users.Therefore,the determination of typical driving conditions is particularly important for the development of durability specifications.For the traditional vehicle durability specification development and revision,the typical driving conditions are often obtained through the vehicle GPS signal.However,the typical road information contained in GPS depends heavily on the map holder’s back-end data,and the identification of the typical driving conditions of the vehicle appears to be difficult in the absence of the relevant database.However,with the emergence of artificial intelligence algorithm,the typical driving working condition recognition method based on the vehicle network data is gradually attracted attention.And the PCA-LVQ algorithm describedin this paper is the very art
关 键 词:主成分分析 学习向量量化神经网络 工况识别 车联网数据
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.2.133