Sparse and Low-Rank Covariance Matrix Estimation  被引量:2

在线阅读下载全文

作  者:Sheng-Long Zhou Nai-Hua Xiu Zi-Yan Luo Ling-Chen Kong 

机构地区:[1]Department of Applied Mathematics,Beijing Jiaotong University,Beijing 100044,China [2]State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044,China

出  处:《Journal of the Operations Research Society of China》2015年第2期231-250,共20页中国运筹学会会刊(英文)

基  金:The work was supported in part by the National Natural Science Foundation of China(Nos.11431002,11171018,71271021,11301022).

摘  要:This paper aims at achieving a simultaneously sparse and low-rank estimator from the semidefinite population covariance matrices.We first benefit from a convex optimization which develops l1-norm penalty to encourage the sparsity and nuclear norm to favor the low-rank property.For the proposed estimator,we then prove that with high probability,the Frobenius norm of the estimation rate can be of order O(√((slgg p)/n))under a mild case,where s and p denote the number of nonzero entries and the dimension of the population covariance,respectively and n notes the sample capacity.Finally,an efficient alternating direction method of multipliers with global convergence is proposed to tackle this problem,and merits of the approach are also illustrated by practicing numerical simulations.

关 键 词:Covariance matrix Sparse and low-rank estimator Estimation rate Alternating direction method of multipliers 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象