Hybrid model of self-organizing map and kernel auto-associator for internet intrusion detection  

在线阅读下载全文

作  者:Bailing Zhang Yungang Zhang Wenjin Lu 

机构地区:[1]Department of Computer Science and Software Engineering,Xi’an Jiaotong-Liverpool University,Suzhou,China [2]Department of Computer Science,Yunnan Normal University,Kunming,China

出  处:《International Journal of Intelligent Computing and Cybernetics》2012年第4期566-581,共16页智能计算与控制论国际期刊(英文)

基  金:Suzhou Municipal Science and Technology Foundation Key Technologies for Video Objects Intelligent Analysis for Criminal Investigation(SS201109).

摘  要:Purpose–The task of internet intrusion detection is to detect anomalous network connections caused by intrusive activities.There have been many intrusion detection schemes proposed,most of which apply both normal and intrusion data to construct classifiers.However,normal data and intrusion data are often seriously imbalanced because intrusive connection data are usually difficult to collect.Internet intrusion detection can be considered as a novelty detection problem,which is the identification of new or unknown data,to which a learning system has not been exposed during training.This paper aims to address this issue.Design/methodology/approach–In this paper,a novelty detection-based intrusion detection system is proposed by combining the self-organizing map(SOM)and the kernel auto-associator(KAA)model proposed earlier by the first author.The KAA model is a generalization of auto-associative networks by training to recall the inputs through kernel subspace.For anomaly detection,the SOM organizes the prototypes of samples while the KAA provides data description for the normal connection patterns.The hybrid SOM/KAA model can also be applied to classify different types of attacks.Findings–Using the KDD CUP,1999 dataset,the performance of the proposed scheme in separating normal connection patterns from intrusive connection patterns was compared with some state-of-art novelty detection methods,showing marked improvements in terms of the high intrusion detection accuracy and low false positives.Simulations on the classification of attack categories also demonstrate favorable results of the accuracy,which are comparable to the entries from the KDD CUP,1999 data mining competition.Originality/value–The hybrid model of SOM and the KAA model can achieve significant results for intrusion detection.

关 键 词:Network intrusion detection SELF-ORGANIZATION Kernel auto-associator Novelty detection INTERNET INTERRUPTS 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象