检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李克资 徐洋[1] 张思聪[1] 闫嘉乐 LI Kezi;XU Yang;ZHANG Sicong;YAN Jiale(Key Laboratory of Information and Computing Science of Guizhou Province,Guizhou Normal University,Guiyang 550001,China)
机构地区:[1]贵州师范大学贵州省信息与计算科学重点实验室,贵阳550001
出 处:《计算机工程与应用》2022年第14期1-15,共15页Computer Engineering and Applications
基 金:国家自然科学基金(U1831131);中央引导地方科技发展专项资金(黔科中引地[2018]4008);贵州省科技计划项目(黔科合支撑[2020]2Y013号);贵州省研究生科研基金(黔教合YJSKYJJ[2021]102)。
摘 要:语音辨识技术是人机交互的重要方式。随着深度学习的不断发展,基于深度学习的自动语音辨识系统也取得了重要进展。然而,经过精心设计的音频对抗样本可以使得基于神经网络的自动语音辨识系统产生错误,给基于语音辨识系统的应用带来安全风险。为了提升基于神经网络的自动语音辨识系统的安全性,需要对音频对抗样本的攻击和防御进行研究。基于此,分析总结对抗样本生成和防御技术的研究现状,介绍自动语音辨识系统对抗样本攻击和防御技术面临的挑战和解决思路。Speech recognition technology is an important way of human-computer interaction.With the continuous devel-opment of deep learning,automatic speech recognition system based on deep learning has also made important progress.However,well-designed audio adversarial examples can cause errors in the automatic speech recognition system based on neural network,and bring security risks to the application of combined speech recognition system.In order to improve the security of automatic speech recognition system based on neural network,it is necessary to study the attack and defense of audio adversarial examples.Firstly,the research status of adversarial examples generation and defense technology is ana-lyzed and summarized.Then automatic speech recognition system audio adversarial examples attack and defense tech-niques and related challenges and solutions are introduced.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38