自动语音辨识对抗攻击和防御技术综述  被引量:1

Survey on Adversarial Example Attack and Defense Technology forAutomatic Speech Recognition

在线阅读下载全文

作  者:李克资 徐洋[1] 张思聪[1] 闫嘉乐 LI Kezi;XU Yang;ZHANG Sicong;YAN Jiale(Key Laboratory of Information and Computing Science of Guizhou Province,Guizhou Normal University,Guiyang 550001,China)

机构地区:[1]贵州师范大学贵州省信息与计算科学重点实验室,贵阳550001

出  处:《计算机工程与应用》2022年第14期1-15,共15页Computer Engineering and Applications

基  金:国家自然科学基金(U1831131);中央引导地方科技发展专项资金(黔科中引地[2018]4008);贵州省科技计划项目(黔科合支撑[2020]2Y013号);贵州省研究生科研基金(黔教合YJSKYJJ[2021]102)。

摘  要:语音辨识技术是人机交互的重要方式。随着深度学习的不断发展,基于深度学习的自动语音辨识系统也取得了重要进展。然而,经过精心设计的音频对抗样本可以使得基于神经网络的自动语音辨识系统产生错误,给基于语音辨识系统的应用带来安全风险。为了提升基于神经网络的自动语音辨识系统的安全性,需要对音频对抗样本的攻击和防御进行研究。基于此,分析总结对抗样本生成和防御技术的研究现状,介绍自动语音辨识系统对抗样本攻击和防御技术面临的挑战和解决思路。Speech recognition technology is an important way of human-computer interaction.With the continuous devel-opment of deep learning,automatic speech recognition system based on deep learning has also made important progress.However,well-designed audio adversarial examples can cause errors in the automatic speech recognition system based on neural network,and bring security risks to the application of combined speech recognition system.In order to improve the security of automatic speech recognition system based on neural network,it is necessary to study the attack and defense of audio adversarial examples.Firstly,the research status of adversarial examples generation and defense technology is ana-lyzed and summarized.Then automatic speech recognition system audio adversarial examples attack and defense tech-niques and related challenges and solutions are introduced.

关 键 词:自动语音辨识 深度学习 对抗攻击 对抗防御 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] TN192[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象