检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:常诗颖 胡燕[1] CHANG Shiying;HU Yan(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430070,China)
机构地区:[1]武汉理工大学计算机科学与技术学院,武汉430070
出 处:《计算机工程与应用》2022年第14期219-226,共8页Computer Engineering and Applications
基 金:湖北省自然科学基金(2019CFC919)。
摘 要:随着网络视频的爆炸式增长,视频记忆度成为热点研究方向。视频记忆度是衡量一个视频令人难忘的程度指标,设计自动预测视频记忆度的计算模型有广泛的应用和前景。当前对视频记忆度预测的研究多集中于普遍的视觉特征或语义因素,没有考虑深度特征对视频记忆度的影响。着重探索了视频的深度特征,在视频预处理后利用现有的深度估计模型提取深度图,将视频原始图像和深度图一起输入预训练的ResNet152网络来提取深度特征;使用TF-IDF算法提取视频的语义特征,并对视频记忆度有影响的单词赋予不同的权重;将深度特征、语义特征和从视频内容中提取的C3D时空特征进行后期融合,提出了一个融合多模态的视频记忆度预测模型。在MediaEval 2019会议提供的大型公开数据集(VideoMem)上进行实验,在视频的短期记忆度预测任务中达到了0.545(长期记忆度预测任务:0.240)的Spearman相关性,证明了该模型的有效性。With the explosive growth of online videos,video memorability has become a research hotspot.Video memora-bility is a metric to describe that how memorable the video is,designing calculation models for automatically predicting video memorability has a wide range of applications and prospects.Most of the current researches on video memorability prediction focused on the common visual features or semantic factors,while didn’t consider the influence of depth fea-tures on video memorability.This paper focuses on exploring the depth features of the video.After the video is prepro-cessed,the depth estimation model is used to extract the depth map.The original video images and the depth maps are input into the pre-trained ResNet152 network to extract the depth features;the TF-IDF algorithm is used to extract seman-tic features of the video,and different weights are assigned to words that have an impact on video memorability;finally,depth features,semantic features,and C3D spatiotemporal features extracted from video content are late fused.A fusion multi-modal video memorability prediction model is proposed.Experiments are conducted on the large public dataset(VideoMem)provided by the MediaEval 2019 conference.The experimenal tresults achieve a Spearman’s rank correla-tion of 0.545(respectively 0.240)for short-term(resp.long-term)memorability prediction,which proves the effective-ness of the model.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33