检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:额·图娅 王岑 黄嘉豪 张耀峰 张晓东[1] 王霄英[1] E Tu-ya;WANG Cen;HUANG Jia-hao(Department of Radiology,Peking University First Hospital,Beijing 100034,China)
机构地区:[1]北京大学第一医院医学影像科,北京100034 [2]北京核工业医院,北京100045 [3]北京赛迈特锐医疗科技有限公司,北京100011
出 处:《放射学实践》2022年第7期884-888,共5页Radiologic Practice
摘 要:目的:利用深度学习方法训练髌骨轴位X线片图像质量控制的自动分类模型。方法:回顾性收集髌骨轴位X线片,由两位专家将髌骨轴位X线片分为不同数据组以训练模型,分别为:术后/非术后共175例(术后96例,非术后79例),侧别共735例(左侧419例,右侧316例),图像质量共453例(图像质量不合格246例,图像质量合格207例)。上述每组数据均按8:1:1的比例随机分为训练集、调优集和测试集,即:术后/非术后为136例、21例、18例,侧别586例、75例、74例,图像质量为362例、46例、45例。训练HRNet模型对上述三组图像进行自动分类,应用混淆矩阵评价模型分类预测效能,以符合率为评价指标。结果:测试集中,三组图像分类模型的预测符合率依次为:术后/非术后94.4%(17/18)、侧别98.6%(73/74)、图像质量91.1%(41/45)。结论:基于深度学习训练的分类模型对髌骨轴位X线片进行图像质量控制效能良好,有利于工作流程的优化及后续对接AI诊断模型。Objective:To develop classification models based on deep learning to automatically classify the axial patella X-ray images in order to assist in image quality control.Methods:Axial patellar X-ray images were retrospectively collected.All images were reviewed by two radiologists and classified into three groups of binary classification,which included postoperative and nonoperative group(n=175,postoperative:n=96,nonoperative:n=79),laterality group(n=735,left:n=419,right:n=316),image quality group(n=453,poor image quality:n=246,good image quality:n=207).Each group data was randomly divided as train set,validation set and test set with the ration of 8:1:1.The classification models were trained using HRNet network,and the effectiveness of the models were evaluated using confusion matrix.Results:The accuracy of classification models of the axial patella X-ray images in the test set were as following:postoperative and nonoperative group 94.4%(17/18),laterality group 98.6%(73/74),and image quality group 91.1%(41/45).Conclusion:The models of automatic classification of axial patella X-ray images have a good performance,which was beneficial to the quality control and the subsequent implementation of AI diagnosis models.
分 类 号:R814.41[医药卫生—影像医学与核医学] R684[医药卫生—放射医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.24.197