冲击载荷对10Mn钢磨损性能的影响及耐磨机制分析  被引量:3

Effect of impact load on wear resistance of 10Mn steel and analysis of wear resistance mechanism

在线阅读下载全文

作  者:王涛[1,2] 胡锋 周雯[1,2,3] 尹朝朝 柯睿[1,2] 吴开明 WANG Tao;HU Feng;ZHOU Wen;YIN Chaochao;KE Rui;WU Kaiming(Collaborative Innovation Center for Advanced Steels,International Research Institute for Steel Technology,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Hubei Province Key Laboratory of Systems Science in Metallurgical Process,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;Metals Valley and Band(Foshan)Metallic Composite Co.,Ltd.,Foshan 528000,Guangdong,China)

机构地区:[1]武汉科技大学高性能钢铁材料及其应用省部共建协同创新中心,国际钢铁研究院,湖北武汉430081 [2]武汉科技大学冶金工业过程系统科学湖北省重点实验室,湖北武汉430081 [3]材谷金带(佛山)金属复合材料有限公司,广东佛山528000

出  处:《钢铁研究学报》2022年第5期478-488,共11页Journal of Iron and Steel Research

基  金:国家自然科学基金资助项目(U20A20279);武汉市科技计划资助项目(2019010701011382);高等学校学科创新引智计划资助项目(111计划);武汉科技大学科发院重大科技项目(2018TDX07)。

摘  要:通过水韧处理配合450℃时效热处理工艺,研究10Mn钢在2和5 J冲击载荷下耐磨性能。结果表明,10Mn钢在5 J冲击载荷下失重量更少,加工硬化的速率更快,并且在不同冲击载荷下磨损失重量都出现了周期性变化。磨损表面SEM结果表明,表面存在犁削磨损、凿削磨损、裂纹。通过XRD数据对亚表面奥氏体和马氏体体积分数进行定量计算,随着冲击功的增加,奥氏体含量减少,马氏体含量增加。对磨损后的亚表面微观组织进行TEM表征,磨损层存在高密度位错、层错、形变孪晶,并且位错在碳化物处堆积。亚表层的EBSD结果表明,磨损过程中产生了形变马氏体和裂纹,马氏体在高位错密度区形核长大,而裂纹沿着奥氏体晶界扩展,最终在高密度位错区和形变马氏体处受阻从而停止扩展。耐磨机制由位错强化、形变诱发相变强化、形变孪晶强化多种强化机制组成。The wear resistance of 10 Mn steel under 2 and 5 J impact load was studied by water toughening treatment and 450 ℃ aging heat treatment. The results show that the weight loss of 10 Mn steel under 5 J impact load is less, the work hardening rate is faster, and the weight loss of 10 Mn steel changes periodically under different impact loads. SEM results show that there are ploughing wear, chiseling wear and cracks on the worn surface. The volume fraction of austenite and martensite on the subsurface was quantitatively calculated by XRD data. With the increase of impact energy, the content of austenite decreases and the content of martensite increases. TEM analysis shows that there are high density dislocations, stacking faults and deformation twins in the worn layer, and the dislocations accumulated in the carbides. EBSD results of subsurface layer show that deformation martensite and crack are formed during wear process. Martensite nucleates and grows in high dislocation density region, while crack propagates along austenite grain boundary. Finally, it is blocked in high dislocation density region and deformation martensite and stops propagation. The wear resistance mechanism consists of dislocation strengthening, deformation induced transformation strengthening and deformation twin strengthening.

关 键 词:高锰钢 时效处理 加工硬化 耐磨机制 冲击磨损 

分 类 号:TG161[金属学及工艺—热处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象