检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李园园 周明章 孙海信[1] 冯晓[1] 应文威 LI Yuanyuan;ZHOU Mingzhang;SUN Haixini;FENG Xiao;YING Wenwei(Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education,School of Information,Xiamen University,Xiamen 361005;Unit 91977,PLA,Beijing 102249)
机构地区:[1]厦门大学信息学院水声通信与海洋信息技术教育部重点实验室,厦门361005 [2]解放军91977部队,北京102249
出 处:《声学学报》2022年第4期461-470,共10页Acta Acustica
基 金:国家自然科学基金项目(61971362)资助。
摘 要:非合作第三方水下标准协议信号识别在水声通信信号识别中具有重要研究意义。针对浅海水声JANUS信号的特征提取因易受脉冲噪声和多径效应等复杂水声环境影响而导致识别率低下的问题,提出一种分数低阶时频谱和ResNet18(Residual Network 18)相结合的迁移学习识别方法。首先,选取JANUS固定前导作为识别对象,设计分数低阶傅里叶同步压缩变换(FLOFSST),以分数低阶操作抑制脉冲噪声,以时频重排特性增强时频集中性。其次,将基于ImageNet的ResNet18预训练模型微调,迁移至JANUS信号和常见水声信号时频图集。仿真表明所提算法在信噪比为-10 dB时JANUS信号的识别率为96.15%,能够有效抑制脉冲噪声并减小多径效应影响,比传统算法识别性能好。海试中JANUS信号识别率达90.00%,证明算法识别准确率和网络的泛化性较高。Non-cooperative and third party underwater standard protocol signal recognition has important research significance in the field of underwater acoustic communication signal recognition.Feature extraction of shallow sea JANUS signal is easily affected by complex underwater acoustic interferences such as impulsive noise and multipath effect,which lead to low recognition rate.To solve this problem,a recognition method based on fractional lower order time-frequency spectrum and Residual Network 18 is proposed.First,the JANUS preamble signal is selected as the recognition object,a fractional lower order fourier synchrosqueezing transform method is designed to suppress impulsive noise by operation of fractional lower order and to improve time-frequency concentration by characteristics of timefrequency rearrangement.Secondly,ResNet18 pre-training model based on ImageNet is fine-tuned,then we train the time-frequency image sets of JANUS signal and other common underwater acoustic signals on this network,and the time-frequency domain features are extracted for recognition.The results of the simulation shows that the proposed algorithm has a high recognition rate of 96.15%when the SNR is-10 dB,it can suppress impulsive noise and reduce the influence of multipath effect,and it has better recognition performance than traditional algorithms.In the sea test,the recognition rate of JANUS signal is 90.00%,confirming that the recognition accuracy of the algorithm and the generalization of the network are relatively high.
关 键 词:迁移学习 特征提取 脉冲噪声 泛化性 多径效应 时频重排 水声信号 信号识别
分 类 号:TN929.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.94.158