检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiaqi ZHAO Hui ZHU Fengwei WANG Rongxing LU Hui LI Zhongmin ZHOU Haitao WAN
机构地区:[1]State Key Laboratory of Integrated Networks Services,Xidian University,Xi’an 710071,China [2]Faculty of Computer Science,University of New Brunswick,Fredericton E3B 5A3,Canada [3]China Mobile(Suzhou)Software Technology Co.,Ltd.,Suzhou 215153,China
出 处:《Science China(Information Sciences)》2022年第7期94-95,共2页中国科学(信息科学)(英文版)
基 金:supported by National Key R&D Program of China (Grant No. 2021YFB3101300);National Natural Science Foundation of China (Grant Nos.61972304, 61932015);Science Foundation of the Ministry of Education (Grant No. MCM20200101)。
摘 要:Dear editor,With the age of big data coming, massive data are being generated distributedly all the time and stored as the form of data islands;meanwhile, data privacy and security are strengthened with the introduction of some privacy laws, which thus bring huge challenges to traditional centralized machine learning. Consequently, federated learning(FL) [1], which can construct global machine learning models over multiple participants while keeping their data localized, gains widespread attention and shows its vast prospects in many fields [2].
关 键 词:STRENGTHENED MASSIVE WIDESPREAD
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] TP309[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15