NOMA无线通信系统中基于用户数自适应分组配对算法  被引量:1

Adaptive group pairing algorithm based on the number of users for NOMA wireless communication systems

在线阅读下载全文

作  者:魏代旺 傅友华 WEI Daiwang;FU Youhua(College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China;National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology,Nanjing University of Posts and Telecommunications,Nanjing 210023,China)

机构地区:[1]南京邮电大学电子与光学工程学院、微电子学院,江苏南京210023 [2]南京邮电大学射频集成与微组装技术国家地方联合工程实验室,江苏南京210023

出  处:《南京邮电大学学报(自然科学版)》2022年第3期44-51,共8页Journal of Nanjing University of Posts and Telecommunications:Natural Science Edition

基  金:国家自然科学基金(61771257)资助项目。

摘  要:非正交多址(Non⁃Orthogonal Multiple Access,NOMA)系统中,针对传统远近配对成功率低导致系统吞吐量小的问题,提出一种新的用户配对算法,该算法可根据用户的数目自适应选择最优分组进行配对。首先基于用户信道增益的大小将用户排序,然后根据用户的数目将用户划分为多种不同的偶数组,在每种偶数组下,将偶数组的前一半与后一半按照固定方式进行配对,最终找出最优的偶数组配对组合。此外,为进一步提高系统吞吐量,根据NOMA用户的信道好坏进行了动态的功率分配。仿真结果证明,所提算法在提高用户的配对数及系统吞吐量上具有优势。In non⁃orthogonal multiple access(NOMA)systems,the traditional far⁃near paring scheme causes a low system throughput.In this regard,a novel user pairing algorithm is proposed to adaptively select the optimal group for pairing according to the number of users.Firstly,the users are ordered based on the user channel gain.And then the users are divided into different groups,each of which contains an even number of users.In each group,the first half and the second half users are paired in a fixed manner,and finally the optimal even group is obtained.In addition,the dynamic power allocation is carried out according to the quality of the NOMA user􀆳s channel,in order to further improve the system throughput.Simulation results demonstrate that the proposed algorithm can increase the number of user pairs and the system throughput.

关 键 词:用户配对 最优分组 偶数组 功率分配 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象