基于多目标优化的大都市土地整治潜力区划决策研究——以上海市青浦区为例  被引量:7

Research on land consolidation potential decision-making zoning in metropolises based on multi-objective optimization:A case study of Qingpu District,Shanghai

在线阅读下载全文

作  者:王瑶[1] WANG Yao(Shanghai Institute of Geological Survey,Shanghai 200072,China)

机构地区:[1]上海市地质调查研究院,上海200072

出  处:《上海国土资源》2022年第2期8-13,共6页Shanghai Land & Resources

基  金:上海市科委启明星计划扬帆专项(22YF1432300);上海市规划和自然资源局重点课题“土地整备引导区生态基底调查与监测(2021)”;上海市地质调查研究院创新团队科研项目“大都市乡村国土空间韧性治理及调控机制研究”。

摘  要:以促进耕地集中连片为单一目标的传统土地整治区划工作,已无法满足国土空间生态修复与全域土地整治提出的可持续发展新要求。本文以上海市青浦区土地整备引导区为研究区域,基于多目标优化理论与Pareto最优算法,考虑空间结构、生态价值、环境影响、农业生产潜力等多维度目标,建立基于多目标优化的大都市土地整治潜力区划决策框架。基于权衡视角下的土地整治潜力区划方案显示,青浦区土地整备引导区内总面积近2922公顷(6397个图斑)的区域划入土地整治潜力极高区,占引导区总面积的43.72%。本文提出的多目标最优的大都市土地整治潜力区划决策方法,能较好地处理多目标权衡下的定量求解问题,可对我国区县级重大土地整治项目的规划部署提供技术支持和借鉴。The traditional land consolidation planning is just focus on improving the concentration of cultivated land,which could not meet the new requirements for sustainable development proposed by the ecological restoration of territorial space and all-around land consolidation.This paper incorporated multi-objectives,including spatial structure,ecological value,environmental impact,and agricultural production potential,into the framework of land consolidation potential zoning decision-making,based on multi-objective optimization theory with Pareto optimal algorithm.Taking Qingpu district as a case study,a total of 6397 plots,almost 2922 hm2,was classified into the category showing highest potential to consolidate into cultivated land from the trade-off perspective.The methodology proposed in this paper,could better deal with the quantitative solution problem under the multi-objective trade-off,which can provide technical support for the planning and deployment of major land consolidation projects at the district and county level in my country.

关 键 词:土地整治 多目标优化 PARETO最优 区划决策 

分 类 号:F323.24[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象