基于微服务架构的电力信息系统全链路监控技术  被引量:14

Full-link monitoring technology of power information system based on micro-service architecture

在线阅读下载全文

作  者:张华兵 周英耀 徐磊 石宏宇 ZHANG Hua-bing;ZHOU Ying-yao;XU Lei;SHI Hong-yu(School of Electronics Engineering and Computer Science,Peking University,Beijing 100000,China;Digital Power Grid Research Institute Co.Ltd.,China Southern Power Grid,Guangzhou 511365,China)

机构地区:[1]北京大学信息科学技术学院,北京100000 [2]南方电网数字电网研究院有限公司,广州511365

出  处:《沈阳工业大学学报》2022年第4期409-414,共6页Journal of Shenyang University of Technology

基  金:广东省科技攻关项目(202012110001).

摘  要:针对电力信息系统的单体架构处理信息量较小,无法全面监测电网链路信息的问题,提出基于微服务架构的电力信息系统的全链路监控技术.利用压缩感知算法建立测量与感知矩阵,完成信号重构;采集全链路信息,使用连续小波变换方法对监控信号降噪处理.构建微服务架构,通过纵向与横向两个维度实现全链路监控.实验结果表明,该方法监控到结果和人工注入的异常数据包数量完全一致,能够实时、准确地监控电力信息系统线路中的电流及电压数据.Aiming at the problem that the single structure of power information system has a small amount of processing information and cannot comprehensively monitor the grid link information,a full-link monitoring technology of power information system under a micro-service architecture was proposed.In order to complete the reconstruction of signals,a compressed sensing algorithm was used to establish the measurement and perception matrix.In terms of the collected full-link information,a continuous wavelet transform method was used to perform the noise reduction processing of monitored signals.The micro-service architecture was established,and the full-link monitoring was realized along both vertical and horizontal dimensions.Experimental results show that the monitoring results of the as-proposed method are completely consistent with the number of abnormal packets obtained by artificial injection,and the as-proposed method can accurately monitor the current and voltage data of power information system in real time.

关 键 词:微服务架构 电力信息系统 全链路监控 连续小波变换 压缩感知 信号重构 测量矩阵 监控精度 

分 类 号:TM74[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象