基于可调Q因子小波变换与稀疏时域法的电力系统低频振荡模态辨识  被引量:11

Power system low frequency oscillation modal identification based on a tunable Q-factor wavelet transform and sparse time domain method

在线阅读下载全文

作  者:张程[1,2] 邱炳林 ZHANG Cheng;QIU Binglin(School of Electronic Electrical and Physics,Fujian University of Technology,Fuzhou 350118,China;Fujian Provincal University Engineering Research Center for Simulation Analysis andIntegrated Control of Smart Grid,Fuzhou 350118,China)

机构地区:[1]福建工程学院电子电气与物理学院,福建福州350118 [2]智能电网仿真分析与综合控制福建省高校工程研究中心,福建福州350118

出  处:《电力系统保护与控制》2022年第13期63-72,共10页Power System Protection and Control

基  金:国家自然科学基金项目资助(51977039);福建工程学院海洋研究专项基金项目资助(GY-Z22063)。

摘  要:对于目前电力系统低频振荡模式识别和参数提取中的噪声干扰等问题,提出一种新的提取低频振荡关键模态参数的方法,将可调Q因子小波变换(Tunable Q factor Wavelet Transform,TQWT)和稀疏时域法(Sparse Time Domain method,STD)进行联合。首先运用TQWT技术对含有噪声的电力系统低频振荡广域测量信号进行预处理,达到降噪的目的。而后将处理后的信号作为新的输入信号,利用稀疏时域法进行振荡模态及其参数的辨识,其输入信号的采集既可单点测量也可多点测量。通过对测试信号和EPRI-36机系统仿真验证了所提方法的优越性,能够在信噪比较低的环境下对噪声进行有效抑制而准确地辨识出系统的振荡模态参数。与传统方法相比具有更好的抗噪能力,所提方法辨识过程中所需时间更短且辨识出的参数也更为准确。There are problems of noise interference in low-frequency oscillation pattern recognition and parameter extraction in a power system.Thus a new method for extracting key modal parameters of low-frequency oscillation is proposed,one which combines a tunable Q factor wavelet transform(TQWT)with a sparse time domain(STD)method.First,TQWT technology is used to preprocess the wide-area measurement signal of low-frequency oscillation in a power system with noise,and then the processed signal is used as a new input signal to identify the oscillation modes and their parameters by an STD algorithm.Then the input signal can be collected by single-point or multi-point measurement.The advantages of the proposed method are verified by simulation of the test signal and a EPRI-36 machine system.It can effectively suppress the noise and accurately identify the oscillation modal parameters of the system in the environment with low signal-to-noise ratio.Compared with the traditional method,it has better anti-noise ability,shorter identification time and more accurate identified parameters.

关 键 词:电力系统 低频振荡 可调Q因子小波变换 稀疏时域法 随机减量法 振荡模态参数 

分 类 号:TM712[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象