检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林军 郭志旭 李函 谢志翔 Lin Jun;Guo Zhixu;Li Han;Xie Zhixiang(Department of Information,the 900th Hospital of Joint Logistics Support Force,Fujian Fuzhou 350025,China)
机构地区:[1]联勤保障部队第900医院信息科,福建福州350025
出 处:《现代科学仪器》2022年第3期173-178,共6页Modern Scientific Instruments
摘 要:为提高医疗数据分类的准确率,将模糊理论引入决策树中构建医疗数据分类模型,并采用粒子群优化算法对模糊决策树模型参数进行优化。结果表明,所提改进方法在关联规则数量、测试准确率、训练准确率三方面表现良好,其中在糖尿病和乳腺癌医疗数据集上分类准确率分别达83.42%和98.14%;相较于FDT模型和CART模型,所提方法的准确率高6.32%和13.39%。通过以上研究得出,改进模糊决策树在医疗数据分类方面有显著优势,可用于医疗大数据分析应用。In order to improve the accuracy of medical data classification,fuzzy theory is introduced into decision tree to construct medical data classification model,and particle swarm optimization algorithm is used to optimize the parameters of fuzzy decision tree model.The results show that the improved method performs well in three aspects:the number of association rules,the accuracy of testing and the accuracy of training.Among them,the accuracy rate of classification is 83.42%and 98.14%respectively in the diabetes and breast cancer medical datasets.Compared with FDT model and cart model,the accuracy of the proposed method is 6.32%and 13.39%higher.Through the above research,it is concluded that the improved fuzzy decision tree has significant advantages in medical data classification and can be used for medical big data analysis and application.
关 键 词:ID3算法 医疗大数据 粒子群优化算法 数据分析
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49