检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈鹏[1] 吴一凡 蔡爽 杨彬 张海库 李超顺[1] CHEN Peng;WU Yifan;CAI Shuang;YANG Bin;ZHANG Haiku;LI Chaoshun(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;Datang Tibet Energy Development Company Limited,Chengdu 610072,China;Datang Hydropower Science&Technology Research Institute Co.,Ltd.,Chengdu 610074,China)
机构地区:[1]华中科技大学土木与水利工程学院,湖北武汉430074 [2]大唐西藏能源开发有限公司,四川成都610072 [3]大唐水电科学技术研究院有限公司,四川成都610074
出 处:《水利学报》2022年第6期747-756,共10页Journal of Hydraulic Engineering
基 金:湖北省重点研发计划项目(2021BAA193);湖北省自然科学基金项目(2019CFA068);国家自然科学基金项目(51879111)。
摘 要:恶劣的运行环境为抽水蓄能机组安全运行带来严峻挑战,抽水蓄能机组劣化趋势评估与预测技术能够有效反映机组运行状况并预测机组未来劣化情况,为机组状态检修提供重要依据。然而,机组运行工况参数中存在大量冗余或干扰信息,严重影响劣化趋势评估的可靠性;此外,难以对复杂的劣化趋势序列实现准确的预测。为解决上述问题,提出一种基于自编码压缩与多尺度特征提取的抽水蓄能机组劣化评估预测模型。首先,为降低拟合误差,利用深度自编码器(DAE)凝练工况参数中的关键信息,结合多层感知机(MLP)建立健康模型;其次,根据机组运行数据与健康模型,生成机组劣化度;最后,以一维卷积神经网络(1DCNN)提取局部空间特征,以双向门控循环单元(BiGRU)提取双向全局时序特征,结合二者的优势,构建多尺度特征提取网络,实现精确的劣化趋势预测。通过某抽水蓄能机组验证了该模型的有效性。与其他模型相比,自编码压缩模型的拟合误差最低,能够生成可靠的劣化趋势;多尺度特征提取网络能够学习劣化趋势序列中的长期趋势与局部波动信息,预测精度更高。The harsh operating environment brings challenges to the safe operation of the pumped storage unit(PSU).The degradation trend assessment and prediction of PSU can effectively reflect operation state of the unit.However,there is a large amount of redundant and interfering information in operating parameters of the unit,which seriously affects the reliability of the assessment.Besides,it is hard to achieve accurate prediction for complex degradation trend sequences.To solve above problems,a degradation trend assessment and prediction model of PSU is proposed on the basis of deep auto-encoder compression and multiscale feature extraction.Firstly,the healthy model is built using deep auto-encoder(DAE)and multilayer perceptron(MLP)to reduce the fitting error,where DAE is adopted to condense the critical information.Secondly,the degradation trend is generated based on the healthy model.Finally,a multiscale feature extraction network is constructed by combining the advantages of one-dimensional convolutional neural network(1DCNN)and bi-directional gated recurrent unit(BiGRU)for the accurate prediction.Compared with other models,the proposed healthy model achieved the lowest fitting error and the multiscale feature extraction network has the highest prediction accuracy.
关 键 词:抽水蓄能机组 劣化趋势评估与预测 深度自编码器 多尺度特征提取 1DCNN BiGRU
分 类 号:TV734[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222