检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:齐海强 郑芳英[1] 罗和治 QI Haiqiang;ZHENG Fangying;LUO Hezhi(School of Science,Zhejiang Sci-Tech University,Hangzhou 310018,China)
出 处:《浙江理工大学学报(自然科学版)》2022年第4期596-600,共5页Journal of Zhejiang Sci-Tech University(Natural Sciences)
基 金:浙江省自然科学基金项目(LZ21A010003,LY19A010025);国家自然科学基金项目(11871433)。
摘 要:针对disjoint双线性规划问题,给出了一个混合整数线性规划变换方法,以求得其全局最优解。该方法将disjoint双线性规划变换为一个带有互补约束的线性规划,并利用0-1变量和大M法线性化互补约束。同时,将该方法应用于金融系统中的不确定性系统性风险估计问题,证明了该问题可变换为一个disjoint双线性规划问题,进而利用所提出的方法求解。数值结果表明:提出的方法能有效找到中大规模最坏情形系统性风险估计问题的全局最优解,并优于已有的全局解方法。In this paper,a mixed integer linear programming reformulation approach for finding the global optimal solution to disjoint bilinear programming was proposed.Through the reformulation of disjoint bilinear programming into as a linear program with complementarity constraints,the complementarity constraints were linearized by using binary variables and big-M methods.Moreover,through the application of this method to estimate the uncertain systemic risk in financial systems,it was proved that this problem can be transformed into a disjoint bilinear programming problem,which could be solved by the proposed method.The numerical results indicate that the proposed method significantly outperforms the existing global solution approach by finding a global optimal solution to medium-and large-scale worst-case systemic risk estimation problem.
关 键 词:双线性规划 混合整数线性规划 DISJOINT 全局最优解
分 类 号:O224[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15