检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘志新[1] 赵松晗 杨毅 袁亚洲[1] LIU Zhixin;ZHAO Songhan;YANG Yi;YUAN Yazhou(School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China)
出 处:《电子与信息学报》2022年第7期2325-2331,共7页Journal of Electronics & Information Technology
基 金:国家自然科学基金(61873223)。
摘 要:为了解决城市场景中无人机(UAV)与地面终端设备(GUs)间易受到障碍物阻挡的问题,该文提出一种基于智能反射面(IRS)辅助的UAV供能通信网络吞吐量最大化算法。首先,在满足能量因果、IRS相移、UAV移动性等约束条件下,建立了一个联合IRS相移设计、GU无线资源分配、UAV飞行轨迹设计的多变量耦合优化模型。其次,通过快坐标下降法(BCD)将原非凸问题转换为3个易于处理的子问题,并通过三角不等式、引入松弛变量、连续凸近似(SCA)等方法,对子问题进行转化求解。仿真结果表明,该文所提算法具有较好的收敛性,同时可有效提高系统总吞吐量。In order to mitigate the adverse effect of blockages between the Unmanned Aerial Vehicle(UAV)and Ground Users(GUs),a throughput maximization algorithm for an Intelligent Reflecting Surface(IRS)-aided UAV communication network is proposed.First,considering the constraints of the energy causality,the IRS phase-shift,the UAV mobility,etc,a multi-variable coupling optimization problem is proposed with jointly optimizing the phase-shift of the IRS,the resource allocation of GUs,and the UAV trajectory.Second,the original non-convex problem is decomposed into three simpler sub-problems via the Block Coordinate Descent(BCD),which are tackled by the triangle inequality,introducing the slack variables and Successive Convex Approximation(SCA).Numerical results show that the proposed algorithm has a desirable convergence,as well as improves effectively the system sum-throughput.
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198