Abundance,Diversity and Functional Potentials of Planktonic Bacteria and Microeukaryotes in the Coral-Reef System of Xisha Islands,China  被引量:1

在线阅读下载全文

作  者:ZHANG Xiaoli WANG Lei PENG Saijun WUZHONG Qiyue ZHANG Lei DONG Zhijun SUN Tingting LIU Ping ZHANG Qianqian ZHAO Jianmin 

机构地区:[1]Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences,Yantai,264003,China [2]University of Chinese Academy of Sciences,Beijing,100049,China [3]State Key Laboratory of Marine Resource Utilization in South China Sea,College of Marine Science,Hainan University,Haikou,570228,China [4]College of Life Science,Yantai University,Yantai,264005,China

出  处:《Journal of Ocean University of China》2022年第3期748-762,共15页中国海洋大学学报(英文版)

基  金:the National Key Research and Development Program of China(No.2018YF C1406501);the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23050303);the National Natural Science Foundation of China(Nos.41676154,41976115);the Key Research Program of Frontier Sciences of CAS(Nos.QYZDB-SSW-DQC013,QYZ DB-SSW-DQC041)。

摘  要:Corals influence microorganisms within the surrounding seawater,yet the diversities and functions of seawater bacteria and microeukaryotes in coral-reef systems have not been well addressed.We collected 40 seawater samples in outer coral reef flats and semi-closed inner lagoons from the surface,middle and bottom layers in the pristine coral-reef system of Xisha Islands,South China Sea.We detected the abundance,composition and distribution of bacteria and microeukaryotes using flow cytometry,qPCR and high throughput sequencing techniques,and profiled the potential ecological roles based on the information of 16S and 18S rDNA sequencing.In terms of flow cytometry,Prochlorococcus dominated the autotrophs with cell abundance ranging from 5.8×10^(2)to 5.44×10^(3)cells mL−1 seawater.Based on qPCR,the 16S rDNA copies were much higher in coral reef flats than in lagoons(P=0.003).The bacterial communities held significantly lower diversity in bottom waters compared with surface and middle waters(P<0.05),which were dominated by SAR11,Flavobacteriales,and Synechococcus.Alveolata represented most of the microeukaryotic communities with Dinophyceae and Syndiniales well represented in all samples.Neither bacterial nor microeukaryotic community exhibited distinct layer or niche pattern,however,Haptophyta and Picozoa decreased with depth and SAR 86,MAST-3 and Picozoa were enriched in lagoons(P<0.05).To adapt the nutrient-poor and organic matter-rich environment,bacterial nitrogen fixation and assimilatory/dissimilatory nitrate reduction were active in the system,and mixotrophy was the most important trophic strategy among microeukaryotes.The study highlighted the ecological adaptability of seawater microbes to the unique coral-reef environments.

关 键 词:community composition function ADAPTABILITY planktonic bacteria and microeukaryotes coral reef systems 

分 类 号:Q178[生物学—水生生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象