检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东海洋大学海运学院
出 处:《珠江水运》2022年第12期84-87,共4页
摘 要:滚动轴承作为一种关键零件已被广泛应用于船舶的减速齿轮箱、船用泵、空压机、小型马达等重要设备中,因此,对船用滚动轴承开展状态监测技术研究对保证船舶可靠性、安全性具有重要意义。随着传感器的微型化、数字化、智能化、多功能化、系统化和网络化,各类传感器(如光敏、声敏、气敏、压敏、温敏、磁敏等传感器)被普遍应用于船舶设备的监测中,采集大量的设备健康状态数据。本文对轴承状态数据进行分析,通过深度神经网络自动学习滚动轴承监测数据中的故障特征,研究数据驱动下船用滚动轴承的状态监测关键技术。
分 类 号:U672[交通运输工程—船舶及航道工程] TP18[交通运输工程—船舶与海洋工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.180.237