基于深度学习的船舶滚动轴承状态监测技术研究  被引量:1

在线阅读下载全文

作  者:余培文[1] 张杜清 

机构地区:[1]广东海洋大学海运学院

出  处:《珠江水运》2022年第12期84-87,共4页

摘  要:滚动轴承作为一种关键零件已被广泛应用于船舶的减速齿轮箱、船用泵、空压机、小型马达等重要设备中,因此,对船用滚动轴承开展状态监测技术研究对保证船舶可靠性、安全性具有重要意义。随着传感器的微型化、数字化、智能化、多功能化、系统化和网络化,各类传感器(如光敏、声敏、气敏、压敏、温敏、磁敏等传感器)被普遍应用于船舶设备的监测中,采集大量的设备健康状态数据。本文对轴承状态数据进行分析,通过深度神经网络自动学习滚动轴承监测数据中的故障特征,研究数据驱动下船用滚动轴承的状态监测关键技术。

关 键 词:深度神经网络 滚动轴承 状态监测 

分 类 号:U672[交通运输工程—船舶及航道工程] TP18[交通运输工程—船舶与海洋工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象