检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李余鸿 LI Yuhong(China Railway Construction Group Co.Ltd.,Beijing 100193,China)
出 处:《铁道建筑技术》2022年第7期86-90,共5页Railway Construction Technology
基 金:中铁建设集团有限公司科技研发项目(19-31c)。
摘 要:在钢结构检测过程中,由于损伤识别参数选择中存在差异,导致钢结构损伤检测结果误差较大。因此,提出大跨度异型钢结构多点损伤检测方法。利用有限元模型在大跨度钢结构中选择最佳的传感器放置点,依据获取的钢结构信息,确定适当损伤识别参数。通过构建曲率模态损伤定位模型,初步确定大跨度异型钢结构多点损伤位置。借助PNN神经网络完成大跨度异型钢结构多点损伤检测。实验结果表明:所设计检测方法与传统方法相比较将检测误差分别降低了23.09%、45.34%,提升了大跨度异型钢结构损伤检测的精度。In the process of steel structure detection,due to the difference in the selection of damage identification parameters,the results deviation of damage detection of steel structure is large.Therefore,a detection method of multi-point damage is proposed for large-span steel structures.Using the finite element model,the best sensor placement point is selected in the long-span steel structure,and the appropriate damage identification parameters are determined according to the obtained steel structure information.By constructing the curvature mode damage location model,the multi-point damage location of long-span special-type steel structure is preliminarily determined.With the help of PNN neural network,the multi-point damage detection of large-span steel structure with dissimilarity is completed.The experimental results show that,compared with the traditional method,the designed detection method reduces the detection deviation by 23.09%and 45.34%respectively,and improves the detection accuracy of large-span special-type steel structure.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38