检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋子豪 程伟[1] 李敬文 李晓柏[1] SONG Zihao;CHENG Wei;LI Jingwen;LI Xiaobai(Department of Early Warning Intelligence,Air Force Early Warning Academy,Wuhan 430019,China;Teaching and Research Guarantee Center,Radar Sergeant School of Air Force Early Warning Academy,Wuhan 430019,China)
机构地区:[1]空军预警学院预警情报系,湖北武汉430019 [2]空军预警学院雷达士官学校教研保障中心,湖北武汉430019
出 处:《无线电工程》2022年第8期1386-1394,共9页Radio Engineering
摘 要:针对常用于特定辐射源识别(Specific Emitter Identification,SEI)的典型一维特征常常引发识别性能下滑问题,高维度特征维度较大、与一般分类器结合使用时计算效率较低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和精细复合多尺度散布熵(Refined Composite Multi-scale Dispersion Entropy,RCMDE)的SEI方法,利用VMD和RCMDE获取原始辐射源信号不同频率分量的多尺度时间复杂度特征,选择支持向量机(Support Vector Machine,SVM)完成分类识别。仿真结果表明,莱斯信道下,在-5~15 dB的信噪比(Signal-to-Noise,SNR)范围内,所提方法对3个不同辐射源个体的识别准确率达到了99.2367%,相比于其他方法有显著的性能提升。To solve the problems that the typical one-dimensional features commonly used in Specific Emitter Identification(SEI)often lead to the decline of recognition performance,large dimensions of high-dimensional features and low computational efficiency when combined with general classifiers,an SEI method based on Variational Mode Decomposition(VMD)and Refined Composite Multi-scale Dispersion Entropy(RCMDE)is proposed.VMD and RCMDE are used to obtain the multi-scale time complexity characteristics of different frequency components of the original emitter signal.Finally,the SVM is selected to complete the classification.The simulation results show that in the range of Signal-to-Noise Ratio(SNR)from-5 dB to 15 dB in Riacian channel,the recognition accuracy of the method for three different radiation sources is 99.2367%.Compared with other methods,the performance is significantly improved.
关 键 词:变分模态分解 精细复合多尺度散布熵 特定辐射源识别
分 类 号:TN914[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117