基于SSWPT边际谱特征信息提取的齿轮故障诊断  被引量:4

Gear fault diagnosis based on SSWPT marginal spectrum feature information extraction

在线阅读下载全文

作  者:唐贵基[1] 徐振丽 庞彬 白洁[1] TANG Guiji;XU Zhenli;PANG Bin;BAI Jie(Hebei Key Laboratory of Electric Machinery Health Maintenance&Failure Prevention,North China Electric Power University,Baoding 071003,China;College of Quality and Technical Supervision,Hebei University,Baoding 071002,China)

机构地区:[1]华北电力大学河北省电力机械装备健康维护与失效预防重点实验室,河北保定071003 [2]河北大学质量技术监督学院,河北保定071002

出  处:《振动与冲击》2022年第14期50-57,共8页Journal of Vibration and Shock

基  金:河北省自然科学基金(E2020502031)。

摘  要:在噪声的影响下,齿轮的故障信息不易被识别。同步压缩小波包变换(synchrosqueezed wave packet transform,SSWPT)作为一种新的时频分析方法,具有良好的抗噪声能力。在其基础上提出基于SSWPT边际谱特征信息提取的齿轮故障诊断方法。首先,对故障齿轮的振动信号进行SSWPT得到信号的能量矩阵,并对能量矩阵进行积分变换求取齿轮振动信号的边际谱;然后,根据边际谱提取啮合频率及其倍频,并选择对应的啮合调制频带对能量矩阵运用同步压缩小波包逆变换(synchrosqueezed wave packet inverse transformation,ISSWPT)进行信号重构;最后,对重构信号进行解调分析,从而可以有效提取齿轮故障特征频率。仿真及试验分析结果表明,该方法可以准确地提取齿轮故障特征信息,且分析效果优于包络谱和基于快速谱峭度的共振解调方法,为齿轮的故障特征提取提供一种有效的方法。Under the influence of noise,gear fault information is difficult to be identified.As a new time-frequency analysis method,synchrosqueezed wave packet transform(SSWPT)has good ability to restrain noise effect.A gear fault diagnosis method based on SSWPT marginal spectrum feature extraction was proposed.Firstly,the vibration signal of gear fault was transformed into an energy matrix by SSWPT and the marginal spectrum of the gear vibration signal was obtained by the integration of the energy matrix.Then,the meshing frequency and its multipliers were extracted by the marginal spectrum of SSWPT and the energy matrixes were reconstructed through inverse synchrosqueezed wave packet transformation(ISSWPT).Finally,the reconstructed signal was demodulated and analysed,and the fault features of the gear were effectively extracted.The simulated and experimental results show that the proposed method is better than the envelope spectrum method and the resonance demodulation method based on fast kurtogram.It can accurately extract gear fault feature information and provides an effective way for gear fault diagnosis.

关 键 词:同步压缩小波包变换(SSWPT) 边际谱 齿轮 故障诊断 

分 类 号:TH132.4[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象