Two-weight Norm Inequalities for Local Fractional Integrals on Gaussian Measure Spaces  

在线阅读下载全文

作  者:Bo Ning DI Qian Jun HE Dun Yan YAN 

机构地区:[1]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,P.R.China [2]School of Applied Science,Beijing Information Science and Technology University,Beijing 100192,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2022年第7期1203-1228,共26页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant Nos.11871452 and 12071473);Beijing Information Science and Technology University Foundation(Grant Nos.2025031)。

摘  要:In this paper,the authors establish the two-weight boundedness of the local fractional maximal operators and local fractional integrals on Gaussian measure spaces associated with the local weights.More precisely,the authors first obtain the two-weight weak-type estimate for the locala fractional maximal operators of orderαfrom L^(p)(v)to L^(q,∞)(u)with 1≤p≤q<∞under a condition of(u,v)∈∪b>a A_(p,q,a)^(b') ,and then obtain the two-weight weak-type estimate for the local fractional integrals.In addition,the authors obtain the two-weight strong-type boundedness of the local fractional maximal operators under a condition of(u,v)∈M_(p,q,a)^(6a+9√da^2) and the two-weight strong-type boundedness of the local fractional integrals.These estimates are established by the radialization method and dyadic approach.

关 键 词:Local fractional integral local fractional maximal operator two-weight inequality Gaussian measure space 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象