检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:CHEN Zhanshou LI Fuxiao ZHU Li XING Yuhong
机构地区:[1]School of Mathematics and Statistics,Qinghai Normal University,Xining 810008,China [2]Academy of Plateau Science and Sustainability,Xining 810008,China [3]Department of Applied Mathematics,Xi'an University of Technology,Xi'an 710048,China [4]College of Finance,Xingjiang University of Finance and Economics,Urumqi 830012,China
出 处:《Journal of Systems Science & Complexity》2022年第3期1009-1029,共21页系统科学与复杂性学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant Nos.11661067,11801438,71661028,61966030;the Natural Science Foundation of Qinghai Province under Grant No.2019-ZJ-920。
摘 要:This paper proposes two ratio-type statistics to sequentially detect mean and variance change-points in the long-memory time series.The limiting distributions of monitoring statistics under the no change-point null hypothesis,alternative hypothesis as well as change-point misspecified hypothesis are proved.In particular,a sieve bootstrap approximation method is proposed to determine the critical values.Simulations indicate that the new monitoring procedures have better finite sample performance than the available off-line tests when the change-point nears to the beginning time of monitoring,and can discriminate between mean and variance change-point.Finally,the authors illustrate their procedures via two real data sets:A set of annual volume of discharge data of the Nile river,and a set of monthly temperature data of northern hemisphere.The authors find a new variance change-point in the latter data.
关 键 词:Change-point monitoring long-memory time series ratio-type statistic sieve bootstrap
分 类 号:P333[天文地球—水文科学] P413[水利工程—水文学及水资源] O212.1[天文地球—地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.137.142.60